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Part 1: Influence functions
Data valuation for neural networks
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In a typical ML model training workflow data preparation is the most involved and 
time-consuming part of the process.

Data Centric ML
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NeurIPS 2021: Data-centric AI challenge

Data Centric ML

● model architecture, training 
hyperparameters and dataset size 
remained unchanged

● Task is to select the best training samples 
to maximize accuracy
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NeurIPS 2021: Data-centric AI challenge

Data Centric ML

● model architecture, training 
hyperparameters and dataset size 
remained unchanged

● Task is to select the best training samples 
to maximize accuracy

● most effective techniques included data 
augmentation, removal of inaccurate 
labels or noisy images, adding specific 
samples to better illustrate edge cases 
(the so called “long-tail”) or correcting 
class imbalance.
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Data Centric ML

Towards Data efficiency: 
Given a model and a task, which is the best training dataset that maximises 
accuracy and minimises cost?
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Data valuation:

● Evaluates training samples that have 
the highest impact on model training

● To each training sample associates a 
score

● Bad samples (e.g. mislabelled 
images) should have bad scores

Data Centric ML

Towards Data efficiency: 
Given a model and a task, which is the best training dataset that maximises 
accuracy and minimises cost?
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● First introduced for “robust statistics” in the 70s
● Popularised for neural networks in 2017 by Koh & Liang
● IF try to assess the effect of each single training point on the 

accuracy of a model

Influence functions
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Let’s start with the following definitions:
● z_i the i-th training sample
● 𝜃 is the (potentially highly) multi-dimensional array of parameters of the NN
● L(z, 𝜃) is the loss of the model for point z and parameters 𝜃

Influence functions: notation

Model training =>
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Let’s start with the following definitions:
● z_i the i-th training sample
● 𝜃 is the (potentially highly) multi-dimensional array of parameters of the NN
● L(z, 𝜃) is the loss of the model for point z and parameters 𝜃

Influence functions: notation

Model training =>

One way to quantify the effect of training point z on the model is to compare it with

Model trained 
without z =>



12

We want to quantify the influence of a training sample z on the accuracy of the 
model (with parameters 𝜃) on a test sample z_test. One naïve definition would be:

Influence functions: naïve definition

For most practical applications, this approach is not viable because it entails 
re-training the model many times!
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When re-training the model is not possible, we need to rely on local analysis.

Influence functions: local approximation

Let’s consider the model trained with the sample z having ϵ more weight than the 
other points
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When re-training the model is not possible, we need to rely on local analysis.

Influence functions: local approximation

As ϵ → 0, a first order account of the effect of z on z_test can be defined as

Let’s consider the model trained with the sample z having ϵ more weight than the 
other points



15

Influence functions: local approximation

Hessian of the model =>

After a few algebraic steps, one finds that the new (local) influence function 
definition is equal to
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Influence functions: local approximation

Hessian of the model =>

After a few algebraic steps, one finds that the new (local) influence function 
definition is equal to

Note that:
● All terms are gradients wrt. 𝜃 and can be calculated through backpropagation!
● Calculating the Hessian is a huge problem. H is a big matrix, that also needs to 

be inverted!
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Influence values have a simple interpretation: 
they tell you how much the loss of a model on a test point z_test decreases if the 

point z is given more weight during training

Influence functions: interpretation
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Influence values have a simple interpretation: 
they tell you how much the loss of a model on a test point z_test decreases if the 

point z is given more weight during training

Influence functions: interpretation

Example: Image classification with Resnet18

Influences
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To recap, Influence functions: 
● try to approximate leave-one-out
● Subject to noisy Hessian inversion
● Single explanations might be flawed

Influence functions: issues
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To recap, Influence functions: 
● try to approximate leave-one-out
● Subject to noisy Hessian inversion
● Single explanations might be flawed

Influence functions: issues

Recent studies include:
● 2020: Basu et al, “Influence functions in deep learning are fragile”

● 2022: Bae et al, “If Influence Functions are the Answer, Then What is 
the Question?”

● 2023: Epifano et al, “Revisiting the fragility of influence functions”



Part 2: Studying LLMs 
Generalization
Scaling Influence functions
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Studying LLMs generalisation

August 2023:
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EK-Fac: a fast Hessian approximation

LLMs are massive models: storing and inverting the Hessian is impossible
=> We need to rely on approximate techniques
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EK-Fac: a fast Hessian approximation

LLMs are massive models: storing and inverting the Hessian is impossible
=> We need to rely on approximate techniques

EK-Fac: eigenvalue-corrected Kronecker-factored approximate curvature

● Approximates the Fisher Information Matrix of a model.
=> In this case: FIM = Hessian

● Assumes gradient of weights independent across layers
=> Hessian is block-diagonal

● it ignores the statistical interdependence among some of the 
gradients within the same layer

● In this paper: applied only to linear layers of the LLM
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Proximal Bregman Response Function

The approximations seem quite drastic. How to compare them to the 
initial definition?
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Proximal Bregman Response Function

The approximations seem quite drastic. How to compare them to the 
initial definition?

In the case of not fully converged models the effect of ϵ up-weighting a 
point is better described by the following:

where
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EK-Fac accuracy

Comparison of IF estimates to PBRF ground truth

The performance of EK-Fac is compared to:

● Gradient dot product => Hessian approximated by unitary matrix

● Lissa: An iterative method, accurate but slow



28

Second order optimisation

K-Fac is not a new idea:
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Further simplifications

A few more simplifying assumptions are needed:

● Training corpus is still huge => initial filtering with Tf-Idf Score

● Query batching to avoid re-computation

● Gradients are huge: => low rank representation



30

Experiments: first example

Which training documents are most influential for this response? 
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Experiments: first example

Attributions are 
calculated per-word

=> sum over 
documents more 
reliable
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Experiments: cross-lingual influence

Are the influential documents for the english query also 
influential for the other languages?
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Experiments: cross-lingual influence

As model size increases, top 10 influential documents for english 
query tend to have high influence also for other languages
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Experiments: sparsity

Influence distribution has a heavy tail
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Experiments: sparsity

top 1% cover > 10% of total influence
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Experiments: layer-wise attributions

EK-Fac allows to trace influence back to each single layer of the LLM.

Influences are uniformly distributed across training set. 
=> This is not true considering single queries
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Experiments: layer-wise attributions

Simple completion queries:
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Experiments: layer-wise attributions

Math reasoning:

Memorization of famous quotes
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Experiments: layer-wise attributions

52 billion model

top 50 training 
sequences

for each query
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Experiments: layer-wise attributions

810 million model

top 50 training 
sequences

for each query
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Experiments: sensitivity to word ordering

Invented query

Prompt: 
The first president 

of Astrobia is

Completion:
Zorald Pfaff
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Conclusions

● Ek-fac can be used to compute influences in an efficient way

● Influence functions can be scaled to LLMs

● They show interesting patterns on how information is stored in the 
NN weights, which could be used for fine-tuning and alignment

● BUT Computational cost remains prohibitive
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Conclusions

● Ek-fac can be used to compute influences in an efficient way

● Influence functions can be scaled to LLMs

● They show interesting patterns on how information is stored in the 
NN weights, which could be used for fine-tuning and alignment

● BUT Computational cost remains prohibitive

Questions?


