Stochastic Optimal Control Matching

Carles Domingo-Enrich

(joint work with Jiequn Han, Brandon Amos, Joan Bruna, Ricky T.Q. Chen)

Microsoft Research New England (work done while at New York University & Meta AI)

September 5, 2024

Content of the talk

Introduction

- Stochastic optimal control: definition
- Examples: robotics, sampling unnormalized densities, importance sampling for diffusions
- Existing approaches: the adjoint method

¹Domingo-Enrich, C., Han, J., Amos, B., Bruna, J., Chen, R.T.Q. Stochastic optimal control matching, arXiv preprint, 2023.

Content of the talk

Introduction

- Stochastic optimal control: definition
- Examples: robotics, sampling unnormalized densities, importance sampling for diffusions
- Existing approaches: the adjoint method

Stochastic Optimal Control Matching

- · Comparing stochastic optimal control with normalizing flows
- Our algorithm: SOCM ¹
- Main features of our algorithm
- Experiments

¹Domingo-Enrich, C., Han, J., Amos, B., Bruna, J., Chen, R.T.Q. *Stochastic optimal control matching*, arXiv preprint, 2023.

Content of the talk

Introduction

- Stochastic optimal control: definition
- Examples: robotics, sampling unnormalized densities, importance sampling for diffusions
- Existing approaches: the adjoint method

Stochastic Optimal Control Matching

- · Comparing stochastic optimal control with normalizing flows
- Our algorithm: SOCM ¹
- Main features of our algorithm
- Experiments

Key ideas

- Derivation of the SOCM loss
- The path-wise reparameterization trick
- · Conclusions and future directions

¹Domingo-Enrich, C., Han, J., Amos, B., Bruna, J., Chen, R.T.Q. Stochastic optimal control matching, arXiv preprint, 2023.

Introduction

Stochastic Optimal Control Matching

Key ideas

 Continuous normalizing flows were originally trained to maximize the likelihood of training samples using the adjoint method (highly non-convex functional landscape).

- Continuous normalizing flows were originally trained to maximize the likelihood of training samples using the adjoint method (highly non-convex functional landscape).
- Diffusion models: least-squares loss to learn score function (convex functional landscape).

- Continuous normalizing flows were originally trained to maximize the likelihood of training samples using the adjoint method (highly non-convex functional landscape).
- Diffusion models: least-squares loss to learn score function (convex functional landscape).
- Currently, stochastic optimal control is solved relying on the adjoint method (highly non-convex functional landscape).

- Continuous normalizing flows were originally trained to maximize the likelihood of training samples using the adjoint method (highly non-convex functional landscape).
- Diffusion models: least-squares loss to learn score function (convex functional landscape).
- Currently, stochastic optimal control is solved relying on the adjoint method (highly non-convex functional landscape).
- Our work is about developing a least-squares loss for stochastic optimal control.

• **Control**: we want to 'control' a system (e.g. driving a car or managing investments) to achieve a desired outcome or behavior.

- **Control**: we want to 'control' a system (e.g. driving a car or managing investments) to achieve a desired outcome or behavior.
- **Optimal** Control: When driving from point A to B, the 'optimal' path would be the one that minimizes time and fuel.

- **Control**: we want to 'control' a system (e.g. driving a car or managing investments) to achieve a desired outcome or behavior.
- **Optimal** Control: When driving from point A to B, the 'optimal' path would be the one that minimizes time and fuel.
- Stochastic Optimal Control: The systems or processes are random and unpredictable; we need to be robust to noise.

Example I: Robotics

Figure 1: Sources: [FB21; Fre+21]

• Goal: move the robot from an initial position to a final one to accomplish a task

Example I: Robotics

Figure 1: Sources: [FB21; Fre+21]

- Goal: move the robot from an initial position to a final one to accomplish a task
- Controls: torque applied by joints, force applied by linear actuators

Figure 1: Sources: [FB21; Fre+21]

- Goal: move the robot from an initial position to a final one to accomplish a task
- Controls: torque applied by joints, force applied by linear actuators
- Optimality: accomplish the task using minimal energy

Figure 1: Sources: [FB21; Fre+21]

- Goal: move the robot from an initial position to a final one to accomplish a task
- Controls: torque applied by joints, force applied by linear actuators
- Optimality: accomplish the task using minimal energy
- Stochasticity: sensor noise, unexpected user behavior, variable conditions

$$dX_t = b(X_t, t) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0 \sim p_0.$$

where:

$$dX_t = b(X_t, t) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0 \sim p_0.$$

where:

$$dX_t = b(X_t, t) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0 \sim p_0.$$

where:

$$dX_t = b(X_t, t) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0 \sim p_0.$$

where:

$$dX_t = b(X_t, t) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0 \sim p_0.$$

where:

- $X : [0, T] \to \mathbb{R}^d$ is the (random) uncontrolled process Robot Example (RE): angles and angular velocities of each joint of the robot
- $b: \mathbb{R}^d \times [0, T] \rightarrow \mathbb{R}$ is the *base drift*,

RE: encodes Newtonian mechanics

$$dX_t = b(X_t, t) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0 \sim p_0.$$

where:

- $X : [0, T] \rightarrow \mathbb{R}^d$ is the (random) *uncontrolled process* Robot Example (RE): angles and angular velocities of each joint of the robot
- $b : \mathbb{R}^d \times [0, T] \to \mathbb{R}$ is the *base drift*,

RE: encodes Newtonian mechanics

λ ∈ ℝ is the noise variance and σ : [0, T] → ℝ^{d×d} is the covariance matrix.
 RE: models stochastic behavior

$$dX_t = b(X_t, t) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0 \sim p_0.$$

where:

- $X : [0, T] \to \mathbb{R}^d$ is the (random) *uncontrolled process* Robot Example (RE): angles and angular velocities of each joint of the robot
- $b: \mathbb{R}^d \times [0, T] \to \mathbb{R}$ is the *base drift*,

RE: encodes Newtonian mechanics

λ ∈ ℝ is the noise variance and σ : [0, T] → ℝ^{d×d} is the covariance matrix.
 RE: models stochastic behavior

Controlled process

$$dX_t^u = (b(X_t^u, t) + \sigma(t)u(X_t^u, t)) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0^u \sim p_0$$

where:

$$dX_t = b(X_t, t) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0 \sim p_0.$$

where:

- $X : [0, T] \to \mathbb{R}^d$ is the (random) *uncontrolled process* Robot Example (RE): angles and angular velocities of each joint of the robot
- $b: \mathbb{R}^d \times [0, T] \to \mathbb{R}$ is the *base drift*,

RE: encodes Newtonian mechanics

• $\lambda \in \mathbb{R}$ is the noise variance and $\sigma : [0, T] \to \mathbb{R}^{d \times d}$ is the covariance matrix. RE: models stochastic behavior

Controlled process

$$dX_t^u = (b(X_t^u, t) + \sigma(t)u(X_t^u, t)) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0^u \sim p_0$$

where:

• $u: \mathbb{R}^d \times [0, T] \to \mathbb{R}^d$ is the *control*

Robot Example (RE): torque (force) applied to each joint of the robot

Uncontrolled process vs. controlled process

Uncontrolled process: $dX_t = b(X_t, t) dt + \sqrt{\lambda}\sigma(t) dB_t$

Uncontrolled process vs. controlled process

Uncontrolled process: $dX_t = b(X_t, t) dt + \sqrt{\lambda}\sigma(t) dB_t$

Controlled process: $dX_t^u = (b(X_t^u, t) + \sigma(t)u(X_t^u, t)) dt + \sqrt{\lambda}\sigma(t)dB_t$

Stochastic Optimal Control problem $\min_{u} \mathbb{E} \left[\int_{0}^{T} \left(\frac{1}{2} \| u(X_{t}^{u}, t) \|^{2} + f(X_{t}^{u}, t) \right) dt + g(X_{T}^{u}) \right],$ subject to $dX_{t}^{u} = (b(X_{t}^{u}, t) + \sigma(t)u(X_{t}^{u}, t)) dt + \sqrt{\lambda}\sigma(t)dB_{t}, \qquad X_{0}^{u} \sim p_{0}.$

where

• $u: \mathbb{R}^d \times [0, T] \to \mathbb{R}^d$ is the *control*

Robot Example (RE): torque (force) applied to each joint of the robot

Stochastic Optimal Control problem
$$\begin{split} \min_{u} \mathbb{E} \bigg[\int_{0}^{T} \bigg(\frac{1}{2} \| u(X_{t}^{u}, t) \|^{2} + f(X_{t}^{u}, t) \bigg) \, dt + g(X_{T}^{u}) \bigg], \\ \text{subject to } dX_{t}^{u} &= (b(X_{t}^{u}, t) + \sigma(t)u(X_{t}^{u}, t)) \, dt + \sqrt{\lambda}\sigma(t) dB_{t}, \qquad X_{0}^{u} \sim p_{0}. \end{split}$$

where

• $u : \mathbb{R}^d \times [0, T] \to \mathbb{R}^d$ is the *control* Robot Example (RE): torque (force) applied to each joint of the robot

X^u: [0, T] → ℝ^d is the (random) controlled process
 RE: angles and angular velocities of each joint

Stochastic Optimal Control problem

$$\min_{u} \mathbb{E} \left[\int_{0}^{T} \left(\frac{1}{2} \| u(X_{t}^{u}, t) \|^{2} + f(X_{t}^{u}, t) \right) dt + g(X_{T}^{u}) \right],$$

subject to $dX_{t}^{u} = (b(X_{t}^{u}, t) + \sigma(t)u(X_{t}^{u}, t)) dt + \sqrt{\lambda}\sigma(t)dB_{t}, \qquad X_{0}^{u} \sim p_{0}.$

where

- $u: \mathbb{R}^d \times [0, T] \to \mathbb{R}^d$ is the *control* Robot Example (RE): torque (force) applied to each joint of the robot
- X^u: [0, T] → ℝ^d is the (random) controlled process
 RE: angles and angular velocities of each joint
- $f : \mathbb{R}^d \times [0, T] \to \mathbb{R}$ is the *state cost*,

RE: small for physically possible configurations, very large for impossible ones

Stochastic Optimal Control problem

$$\begin{split} \min_{u} \mathbb{E} \bigg[\int_{0}^{T} \bigg(\frac{1}{2} \| u(X_{t}^{u}, t) \|^{2} + f(X_{t}^{u}, t) \bigg) \, dt + g(X_{T}^{u}) \bigg], \\ \text{subject to } dX_{t}^{u} &= (b(X_{t}^{u}, t) + \sigma(t)u(X_{t}^{u}, t)) \, dt + \sqrt{\lambda}\sigma(t) dB_{t}, \qquad X_{0}^{u} \sim p_{0}. \end{split}$$

where

• $u: \mathbb{R}^d \times [0, T] \to \mathbb{R}^d$ is the *control* Robot Example (RE): torque (force) applied to each joint of the robot

- X^u: [0, T] → ℝ^d is the (random) controlled process RE: angles and angular velocities of each joint
- $f : \mathbb{R}^d \times [0, T] \to \mathbb{R}$ is the *state cost*,

RE: small for physically possible configurations, very large for impossible ones

• $g: \mathbb{R}^d \to \mathbb{R}$ is the *terminal cost*,

RE: small for desired final configuration, very large otherwise

Stochastic Optimal Control problem

$$\begin{split} \min_{u} \mathbb{E} \bigg[\int_{0}^{T} \bigg(\frac{1}{2} \| u(X_{t}^{u}, t) \|^{2} + f(X_{t}^{u}, t) \bigg) \, dt + g(X_{T}^{u}) \bigg], \\ \text{subject to } dX_{t}^{u} &= (b(X_{t}^{u}, t) + \sigma(t)u(X_{t}^{u}, t)) \, dt + \sqrt{\lambda}\sigma(t) dB_{t}, \qquad X_{0}^{u} \sim p_{0}. \end{split}$$

where

• $u: \mathbb{R}^d \times [0, T] \to \mathbb{R}^d$ is the *control* Robot Example (RE): torque (force) applied to each joint of the robot

- X^u: [0, T] → ℝ^d is the (random) controlled process
 RE: angles and angular velocities of each joint
- $f : \mathbb{R}^d \times [0, T] \to \mathbb{R}$ is the *state cost*,

RE: small for physically possible configurations, very large for impossible ones

• $g: \mathbb{R}^d \to \mathbb{R}$ is the *terminal cost*,

RE: small for desired final configuration, very large otherwise

• $b : \mathbb{R}^d \times [0, T] \to \mathbb{R}$ is the *base drift*,

RE: encodes Newtonian mechanics

Stochastic Optimal Control problem

$$\begin{split} \min_{u} \mathbb{E} \bigg[\int_{0}^{T} \bigg(\frac{1}{2} \| u(X_{t}^{u}, t) \|^{2} + f(X_{t}^{u}, t) \bigg) \, dt + g(X_{T}^{u}) \bigg], \\ \text{subject to } dX_{t}^{u} &= (b(X_{t}^{u}, t) + \sigma(t)u(X_{t}^{u}, t)) \, dt + \sqrt{\lambda}\sigma(t) dB_{t}, \qquad X_{0}^{u} \sim p_{0}. \end{split}$$

where

• $u: \mathbb{R}^d \times [0, T] \to \mathbb{R}^d$ is the *control* Robot Example (RE): torque (force) applied to each joint of the robot

- X^u: [0, T] → ℝ^d is the (random) controlled process
 RE: angles and angular velocities of each joint
- $f : \mathbb{R}^d \times [0, T] \to \mathbb{R}$ is the *state cost*,

RE: small for physically possible configurations, very large for impossible ones

• $g: \mathbb{R}^d \to \mathbb{R}$ is the *terminal cost*,

RE: small for desired final configuration, very large otherwise

• $b : \mathbb{R}^d \times [0, T] \to \mathbb{R}$ is the *base drift*,

RE: encodes Newtonian mechanics

• $\lambda \in \mathbb{R}$ is the *noise variance* and $\sigma : [0, T] \to \mathbb{R}^{d \times d}$ is the *covariance matrix*.

Example II: Sampling from unnormalized densities

Reminder: Stochastic Optimal Control problem

$$\begin{split} \min_{u} \mathbb{E}\bigg[\int_{0}^{T} \bigg(\frac{1}{2} \|u(X_{t}^{u},t)\|^{2} + f(X_{t}^{u},t)\bigg) dt + g(X_{T}^{u})\bigg],\\ \text{subject to } dX_{t}^{u} &= (b(X_{t}^{u},t) + \sigma(t)u(X_{t}^{u},t)) dt + \sqrt{\lambda}\sigma(t)dB_{t}, \qquad X_{0}^{u} \sim p_{0}. \end{split}$$

Example II: Sampling from unnormalized densities

Reminder: Stochastic Optimal Control problem $\min_{u} \mathbb{E} \left[\int_{0}^{T} \left(\frac{1}{2} \| u(X_{t}^{u}, t) \|^{2} + f(X_{t}^{u}, t) \right) dt + g(X_{T}^{u}) \right],$ subject to $dX_{t}^{u} = (b(X_{t}^{u}, t) + \sigma(t)u(X_{t}^{u}, t)) dt + \sqrt{\lambda}\sigma(t)dB_{t}, \qquad X_{0}^{u} \sim p_{0}.$

• Challenge: Given a function $g : \mathbb{R}^d \to \mathbb{R}$ such that $\int_{\mathbb{R}^d} e^{-g(x)} dx < +\infty$, generate samples from the distribution $\pi(x) \propto e^{-g(x)}$.

Example II: Sampling from unnormalized densities

Reminder: Stochastic Optimal Control problem $\min_{u} \mathbb{E} \left[\int_{0}^{T} \left(\frac{1}{2} \| u(X_{t}^{u}, t) \|^{2} + f(X_{t}^{u}, t) \right) dt + g(X_{T}^{u}) \right],$ subject to $dX_{t}^{u} = (b(X_{t}^{u}, t) + \sigma(t)u(X_{t}^{u}, t)) dt + \sqrt{\lambda}\sigma(t)dB_{t}, \qquad X_{0}^{u} \sim p_{0}.$

- Challenge: Given a function $g : \mathbb{R}^d \to \mathbb{R}$ such that $\int_{\mathbb{R}^d} e^{-g(x)} dx < +\infty$, generate samples from the distribution $\pi(x) \propto e^{-g(x)}$.
- Applications in Bayesian statistics (sampling from posterior) and computational physics (free energy computations).
Example II: Sampling from unnormalized densities

Reminder: Stochastic Optimal Control problem

$$\begin{split} \min_{u} \mathbb{E}\bigg[\int_{0}^{T} \bigg(\frac{1}{2} \|\boldsymbol{u}(X_{t}^{u},t)\|^{2} + f(X_{t}^{u},t)\bigg) \, dt + g(X_{T}^{u})\bigg], \\ \text{subject to } dX_{t}^{u} &= (b(X_{t}^{u},t) + \sigma(t)\boldsymbol{u}(X_{t}^{u},t)) \, dt + \sqrt{\lambda}\sigma(t) dB_{t}, \qquad X_{0}^{u} \sim p_{0}. \end{split}$$

- Challenge: Given a function $g : \mathbb{R}^d \to \mathbb{R}$ such that $\int_{\mathbb{R}^d} e^{-g(x)} dx < +\infty$, generate samples from the distribution $\pi(x) \propto e^{-g(x)}$.
- Applications in Bayesian statistics (sampling from posterior) and computational physics (free energy computations).
- Common approach: MCMC algorithms. Issue: They struggle with multimodality.

Example II: Sampling from unnormalized densities

Stochastic Optimal Control approach to sampling [BRU23] $\min_{u} \mathbb{E} \left[\int_{0}^{T} \left(\frac{1}{2} \| u(X_{t}^{u}, t) \|^{2} - (\nabla \cdot b)(X_{t}^{u}, t) \right) dt + g(X_{T}^{u}) \right],$ subject to $dX_{t}^{u} = (b(X_{t}^{u}, t) + \sigma(t)u(X_{t}^{u}, t)) dt + \sigma(t)dB_{t}, \qquad X_{0}^{u} \sim N(0, I),$

- Challenge: Given a function $g : \mathbb{R}^d \to \mathbb{R}$ such that $\int_{\mathbb{R}^d} e^{-g(x)} dx < +\infty$, generate samples from the distribution $\pi(x) \propto e^{-g(x)}$.
- Applications in Bayesian statistics (sampling from posterior) and computational physics (free energy computations).
- Common approach: MCMC algorithms. Issue: They struggle with multimodality.
- Stochastic optimal control approach:
 - Let b(x, t) = x be an arbitrary base drift and $T \gg 1$.
 - Set g as the terminal cost.
 - Set $-\nabla\cdot b$ as the state cost.

Then, $X_T^{\boldsymbol{u}} \sim \pi \propto e^{-\boldsymbol{g}(x)}$.

Example II: Sampling from unnormalized densities

Stochastic Optimal Control approach to sampling [BRU23] $\min_{u} \mathbb{E} \left[\int_{0}^{T} \left(\frac{1}{2} \| u(X_{t}^{u}, t) \|^{2} - (\nabla \cdot b)(X_{t}^{u}, t) \right) dt + g(X_{T}^{u}) \right],$ subject to $dX_{t}^{u} = (b(X_{t}^{u}, t) + \sigma(t)u(X_{t}^{u}, t)) dt + \sigma(t)dB_{t}, \qquad X_{0}^{u} \sim N(0, I),$

- Challenge: Given a function $g : \mathbb{R}^d \to \mathbb{R}$ such that $\int_{\mathbb{R}^d} e^{-g(x)} dx < +\infty$, generate samples from the distribution $\pi(x) \propto e^{-g(x)}$.
- Applications in Bayesian statistics (sampling from posterior) and computational physics (free energy computations).
- Common approach: MCMC algorithms. Issue: They struggle with multimodality.
- Stochastic optimal control approach:
 - Let b(x, t) = x be an arbitrary base drift and $T \gg 1$.
 - Set g as the terminal cost.
 - Set $-\nabla\cdot b$ as the state cost.

Then, $X_T^{\boldsymbol{u}} \sim \pi \propto e^{-\boldsymbol{g}(x)}$.

We want to estimate the probability that the process X satisfying $dX_t = b(X_t, t) dt + \sigma(t) dB_t$, $X_0 = x_0$ will go through the top hole, i.e. $P(X_T \in \mathcal{O})$.

We want to estimate the probability that the process X satisfying $dX_t = b(X_t, t) dt + \sigma(t) dB_t$, $X_0 = x_0$ will go through the top hole, i.e. $P(X_T \in \mathcal{O})$.

Very unlikely event! Monte Carlo estimation is high-variance.

We want to estimate the probability that the process X satisfying $dX_t = b(X_t, t) dt + \sigma(t) dB_t$, $X_0 = x_0$ will go through the top hole, i.e. $P(X_T \in \mathcal{O})$.

Very unlikely event! Monte Carlo estimation is high-variance. In general, we want to estimate:

$$\mathbb{E}\left[\exp\left(-\int_{0}^{T}f(X_{t},t)\,dt-g(X_{T})\right)\right].$$
(1)

We recover $P(X_T \in \mathcal{O})$ by setting f(x, t) = 0, $g(x) = -\log \mathbb{1}_{\mathcal{O}}(x)$.

We want to estimate the probability that the process X satisfying $dX_t = b(X_t, t) dt + \sigma(t) dB_t$, $X_0 = x_0$ will go through the top hole, i.e. $P(X_T \in \mathcal{O})$.

Very unlikely event! Monte Carlo estimation is high-variance. In general, we want to estimate:

$$\mathbb{E}\Big[\exp\big(-\int_0^T f(X_t,t)\,dt - g(X_T)\big)\Big].\tag{1}$$

We recover $P(X_T \in \mathcal{O})$ by setting f(x, t) = 0, $g(x) = -\log \mathbb{1}_{\mathcal{O}}(x)$. We need to perform importance sampling using a process that goes through the top hole often!

• Let

$$F(X) = \exp\bigg(-\int_0^T f(X_t,t)\,dt - g(X_{\tau\wedge T})\bigg).$$

Let

$$F(X) = \exp\bigg(-\int_0^T f(X_t,t)\,dt - g(X_{\tau\wedge T})\bigg).$$

- Importance sampling: Estimate $\mathbb{E}[F(X)]$ using a Monte Carlo estimate of $\mathbb{E}[F(X^u)\frac{d\mathbb{P}^u}{d\mathbb{P}^u}(X^u)]$, where
 - **u** is arbitrary,
 - $X^{\boldsymbol{u}}$ is a solution of $dX^{\boldsymbol{u}}_t = (b(X^{\boldsymbol{u}}_t, t) + \sigma(t)\boldsymbol{u}(X^{\boldsymbol{u}}_t, t)) dt + \sigma(t) dB_t, X^{\boldsymbol{u}}_0 = x_0,$
 - $-\mathbb{P},\mathbb{P}^{u}$ are the laws of X and X^{u} ,
 - $-\frac{d\mathbb{P}}{d\mathbb{P}^{u}}(X^{u})$ is computed using the Girsanov theorem.

Let

$$F(X) = \exp\left(-\int_0^T f(X_t, t) dt - g(X_{\tau \wedge T})\right).$$

- Importance sampling: Estimate $\mathbb{E}[F(X)]$ using a Monte Carlo estimate of $\mathbb{E}[F(X^u)\frac{d\mathbb{P}^u}{d\mathbb{P}^u}(X^u)]$, where
 - **u** is arbitrary,
 - $X^{\boldsymbol{u}}$ is a solution of $dX^{\boldsymbol{u}}_t = (b(X^{\boldsymbol{u}}_t, t) + \sigma(t)\boldsymbol{u}(X^{\boldsymbol{u}}_t, t)) dt + \sigma(t) dB_t, X^{\boldsymbol{u}}_0 = x_0,$
 - $-\mathbb{P}, \mathbb{P}^{u}$ are the laws of X and X^{u} ,
 - $-\frac{d\mathbb{P}}{d\mathbb{P}^{u}}(X^{u})$ is computed using the Girsanov theorem.
- The control *u* that minimizes the variance Var[*F*(*X^u*) dℙ/dℙ*u*(*X^u*)] achieves zero variance, and is the solution of:

Let

$$F(X) = \exp\left(-\int_0^T f(X_t, t) dt - g(X_{\tau \wedge T})\right).$$

- Importance sampling: Estimate $\mathbb{E}[F(X)]$ using a Monte Carlo estimate of $\mathbb{E}[F(X^u)\frac{d\mathbb{P}^u}{d\mathbb{P}^u}(X^u)]$, where
 - **u** is arbitrary,
 - $X^{\boldsymbol{u}}$ is a solution of $dX^{\boldsymbol{u}}_t = (b(X^{\boldsymbol{u}}_t, t) + \sigma(t)\boldsymbol{u}(X^{\boldsymbol{u}}_t, t)) dt + \sigma(t) dB_t, X^{\boldsymbol{u}}_0 = x_0,$
 - $-\mathbb{P}, \mathbb{P}^{u}$ are the laws of X and X^{u} ,
 - $-\frac{d\mathbb{P}}{d\mathbb{P}^{u}}(X^{u})$ is computed using the Girsanov theorem.
- The control *u* that minimizes the variance Var[*F*(*X^u*) dℙ^u/dℙ^u(*X^u*)] achieves zero variance, and is the solution of:

Stochastic Optimal Control problem

$$\min_{u} \mathbb{E} \left[\int_{0}^{T} \left(\frac{1}{2} \| u(X_{t}^{u}, t) \|^{2} + f(X_{t}^{u}, t) \right) dt + g(X_{T}^{u}) \right],$$

subject to $dX_{t}^{u} = (b(X_{t}^{u}, t) + \sigma(t)u(X_{t}^{u}, t)) dt + \sqrt{\lambda}\sigma(t)dB_{t}, \qquad X_{0}^{u} = x_{0}.$

$$\min_{\boldsymbol{u}\in\mathcal{U}}\mathcal{L}(\boldsymbol{u}) \triangleq \mathbb{E}\bigg[\int_0^T \left(\frac{1}{2}\|\boldsymbol{u}(X_t^{\boldsymbol{u}},t)\|^2 + f(X_t^{\boldsymbol{u}},t)\right)dt + g(X_T^{\boldsymbol{u}})\bigg],\tag{2}$$

subject to $dX_t^u = (b(X_t^u, t) + \sigma(t)u(X_t^u, t)) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0^u \sim p_0.$ (3)

 Dimension d small (d ≤ 3): solve the Hamilton-Jacobi-Bellman (HJB) partial differential equation using dynamic programming [Bel57].

$$\min_{u \in \mathcal{U}} \mathcal{L}(u) \triangleq \mathbb{E}\left[\int_0^T \left(\frac{1}{2} \|u(X_t^u, t)\|^2 + f(X_t^u, t)\right) dt + g(X_T^u)\right],\tag{2}$$

subject to
$$dX_t^{\boldsymbol{u}} = (b(X_t^{\boldsymbol{u}}, t) + \sigma(t)\boldsymbol{u}(X_t^{\boldsymbol{u}}, t)) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0^{\boldsymbol{u}} \sim p_0.$$
 (3)

- Dimension d small (d ≤ 3): solve the Hamilton-Jacobi-Bellman (HJB) partial differential equation using dynamic programming [Bel57].
- Dimension d higher: the state-of-the-art approach, which is also classical [Pon62; Onk+23; NR23], is the adjoint method:

$$\min_{u \in \mathcal{U}} \mathcal{L}(u) \triangleq \mathbb{E}\left[\int_0^T \left(\frac{1}{2} \|u(X_t^u, t)\|^2 + f(X_t^u, t)\right) dt + g(X_T^u)\right],\tag{2}$$

subject to
$$dX_t^{\boldsymbol{u}} = (b(X_t^{\boldsymbol{u}}, t) + \sigma(t)\boldsymbol{u}(X_t^{\boldsymbol{u}}, t)) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0^{\boldsymbol{u}} \sim p_0.$$
 (3)

- Dimension d small (d ≤ 3): solve the Hamilton-Jacobi-Bellman (HJB) partial differential equation using dynamic programming [Bel57].
- Dimension d higher: the state-of-the-art approach, which is also classical [Pon62; Onk+23; NR23], is the adjoint method:
 - Parameterize the control with a neural network $u\equiv u_{ heta}$

$$\min_{u \in \mathcal{U}} \mathcal{L}(u) \triangleq \mathbb{E}\left[\int_0^T \left(\frac{1}{2} \|u(X_t^u, t)\|^2 + f(X_t^u, t)\right) dt + g(X_T^u)\right],\tag{2}$$

subject to $dX_t^{\boldsymbol{u}} = (b(X_t^{\boldsymbol{u}}, t) + \sigma(t)\boldsymbol{u}(X_t^{\boldsymbol{u}}, t)) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0^{\boldsymbol{u}} \sim p_0.$ (3)

- Dimension d small (d ≤ 3): solve the Hamilton-Jacobi-Bellman (HJB) partial differential equation using dynamic programming [Bel57].
- Dimension d higher: the state-of-the-art approach, which is also classical [Pon62; Onk+23; NR23], is the adjoint method:
 - Parameterize the control with a neural network $u \equiv u_{ heta}$
 - Simulate a batch of trajectories of the SDE (3) to approximate the control objective $\mathcal{L}(u)$

$$\min_{u \in \mathcal{U}} \mathcal{L}(u) \triangleq \mathbb{E}\left[\int_0^T \left(\frac{1}{2} \|u(X_t^u, t)\|^2 + f(X_t^u, t)\right) dt + g(X_T^u)\right],\tag{2}$$

subject to $dX_t^{\boldsymbol{u}} = (b(X_t^{\boldsymbol{u}}, t) + \sigma(t)\boldsymbol{u}(X_t^{\boldsymbol{u}}, t)) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0^{\boldsymbol{u}} \sim p_0.$ (3)

- Dimension d small (d ≤ 3): solve the Hamilton-Jacobi-Bellman (HJB) partial differential equation using dynamic programming [Bel57].
- Dimension d higher: the state-of-the-art approach, which is also classical [Pon62; Onk+23; NR23], is the adjoint method:
 - Parameterize the control with a neural network $u \equiv u_{ heta}$
 - Simulate a batch of trajectories of the SDE (3) to approximate the control objective L(u)
 - Compute the gradient of the approximate control objective w.r.t. heta

$$\min_{u \in \mathcal{U}} \mathcal{L}(u) \triangleq \mathbb{E}\left[\int_0^T \left(\frac{1}{2} \|u(X_t^u, t)\|^2 + f(X_t^u, t)\right) dt + g(X_T^u)\right],\tag{2}$$

subject to $dX_t^{\boldsymbol{u}} = (b(X_t^{\boldsymbol{u}}, t) + \sigma(t)\boldsymbol{u}(X_t^{\boldsymbol{u}}, t)) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0^{\boldsymbol{u}} \sim p_0.$ (3)

- Dimension d small (d ≤ 3): solve the Hamilton-Jacobi-Bellman (HJB) partial differential equation using dynamic programming [Bel57].
- Dimension d higher: the state-of-the-art approach, which is also classical [Pon62; Onk+23; NR23], is the adjoint method:
 - Parameterize the control with a neural network $u \equiv u_{ heta}$
 - Simulate a batch of trajectories of the SDE (3) to approximate the control objective $\mathcal{L}(u)$
 - Compute the gradient of the approximate control objective w.r.t. heta
 - Update θ using a stochastic optimization algorithm (e.g. Adam)

 L^2 error for control u: $\mathbb{E}_{t,X^{u^*}} \| u(X_t^{u^*},t) - u^*(X_t^{u^*},t) \|^2$, where u^* is the optimal control

 L^2 error for control u: $\mathbb{E}_{t,X^{u^*}} \| u(X_t^{u^*},t) - u^*(X_t^{u^*},t) \|^2$, where u^* is the optimal control

 L^2 error for control u: $\mathbb{E}_{t,X^{u^*}} || u(X_t^{u^*}, t) - u^*(X_t^{u^*}, t) ||^2$, where u^* is the optimal control

Why? Because the adjoint loss is highly non-convex w.r.t. the control u!

$$\min_{u} \mathbb{E} \left[\int_{\mathbf{0}}^{T} \left(\frac{1}{2} \| u(X_{t}^{u}, t) \|^{2} + f(X_{t}^{u}, t) \right) dt + g(X_{T}^{u}) \right], \text{ s.t. } \begin{cases} dX_{t}^{u} = (b(X_{t}^{u}, t) + u(X_{t}^{u}, t)) dt + \sqrt{\lambda} dB_{t}, \\ X_{\mathbf{0}}^{u} \sim p_{\mathbf{0}}. \end{cases}$$

 L^2 error for control u: $\mathbb{E}_{t,X^{u^*}} || u(X_t^{u^*}, t) - u^*(X_t^{u^*}, t) ||^2$, where u^* is the optimal control

Why? Because the adjoint loss is highly non-convex w.r.t. the control u!

$$\min_{u} \mathbb{E} \left[\int_{\mathbf{0}}^{T} \left(\frac{1}{2} \| u(X_{t}^{u}, t) \|^{2} + f(X_{t}^{u}, t) \right) dt + g(X_{T}^{u}) \right], \text{ s.t. } \begin{cases} dX_{t}^{u} = (b(X_{t}^{u}, t) + u(X_{t}^{u}, t)) dt + \sqrt{\lambda} dB_{t}, \\ X_{\mathbf{0}}^{u} \sim p_{\mathbf{0}}. \end{cases}$$

Can we design algorithms with stable training?

Introduction

Stochastic Optimal Control Matching

Key ideas

We've seen a similar story in generative modeling...

• Continuous Normalizing Flows (CNFs) [Che+18]: originally trained to maximize the log-likelihood of the generated samples, using the *adjoint method*.

$$\min_{\mathbf{v}} \mathbb{E}\bigg[-\log p_0(X_0^{\mathbf{v}}) + \int_0^1 \nabla \cdot \mathbf{v}_t(X_t^{\mathbf{v}}) dt\bigg], \text{ s.t. } \begin{cases} dX_t^{\mathbf{v}} = \mathbf{v}(X_t^{\mathbf{v}}, t) dt, \\ X_0^{\mathbf{v}} \sim p_0. \end{cases}$$

We've seen a similar story in generative modeling...

• Continuous Normalizing Flows (CNFs) [Che+18]: originally trained to maximize the log-likelihood of the generated samples, using the *adjoint method*.

$$\min_{\mathbf{v}} \mathbb{E}\bigg[-\log p_0(X_0^{\mathbf{v}}) + \int_0^1 \nabla \cdot \mathbf{v}_t(X_t^{\mathbf{v}}) dt \bigg], \text{ s.t. } \begin{cases} dX_t^{\mathbf{v}} = \mathbf{v}(X_t^{\mathbf{v}}, t) dt, \\ X_0^{\mathbf{v}} \sim p_0. \end{cases}$$

• This loss is highly non-convex w.r.t v!

We've seen a similar story in generative modeling ...

• Continuous Normalizing Flows (CNFs) [Che+18]: originally trained to maximize the log-likelihood of the generated samples, using the *adjoint method*.

$$\min_{\mathbf{v}} \mathbb{E}\bigg[-\log p_0(X_0^{\mathbf{v}}) + \int_0^1 \nabla \cdot \mathbf{v}_t(X_t^{\mathbf{v}}) dt \bigg], \text{ s.t. } \begin{cases} dX_t^{\mathbf{v}} = \mathbf{v}(X_t^{\mathbf{v}}, t) dt, \\ X_0^{\mathbf{v}} \sim p_0. \end{cases}$$

- This loss is highly non-convex w.r.t v!
- Diffusion models superseded maximum likelihood CNFs, and require solving least squares problems:

DDPM [HJA20]: $\min_{\mathbf{v}} \mathbb{E}_{t,X_0,X_1} \| \mathbf{v}_t(e^{-t}X_1 + \sqrt{1 - e^{-2t}}X_0) - X_0 \|^2$ (4)

We've seen a similar story in generative modeling...

• Continuous Normalizing Flows (CNFs) [Che+18]: originally trained to maximize the log-likelihood of the generated samples, using the *adjoint method*.

$$\min_{\mathbf{v}} \mathbb{E} \bigg[-\log p_0(X_0^{\mathbf{v}}) + \int_0^1 \nabla \cdot \mathbf{v}_t(X_t^{\mathbf{v}}) dt \bigg], \text{ s.t. } \begin{cases} dX_t^{\mathbf{v}} = \mathbf{v}(X_t^{\mathbf{v}}, t) dt, \\ X_0^{\mathbf{v}} \sim p_0. \end{cases}$$

- This loss is highly non-convex w.r.t v!
- Diffusion models superseded maximum likelihood CNFs, and require solving least squares problems:

DDPM [HJA20]: $\min_{\mathbf{v}} \mathbb{E}_{t,X_{0},X_{1}} \| \mathbf{v}_{t}(e^{-t}X_{1} + \sqrt{1 - e^{-2t}}X_{0}) - X_{0} \|^{2}$ (4)

• This loss is **convex** with respect to **v**!

Task	Non-convex functional landscape	Least squares functional landscape
Generative modeling	Maximum Likelihood CNFs	Diffusion models, Flow Matching
Stochastic optimal control	Adjoint method	?

Task	Non-convex functional landscape	Least squares functional landscape
Generative modeling	Maximum Likelihood CNFs	Diffusion models, Flow Matching
Stochastic optimal control	Adjoint method	Stochastic Optimal Control Matching (ours)

Stochastic Optimal Control problem

$$\begin{split} \min_{u \in \mathcal{U}} \mathcal{L}(u) &\triangleq \mathbb{E} \bigg[\int_0^T \bigg(\frac{1}{2} \| u(X_t^u, t) \|^2 + f(X_t^u, t) \bigg) \, dt + g(X_T^u) \bigg], \\ \text{subject to } dX_t^u &= (b(X_t^u, t) + \sigma(t) u(X_t^u, t)) \, dt + \sqrt{\lambda} \sigma(t) dB_t, \qquad X_0^u \sim p_0. \end{split}$$

Stochastic Optimal Control Matching (SOCM) [Dom+23]

$$\min_{\boldsymbol{u},\boldsymbol{M}} \mathcal{L}(\boldsymbol{u},\boldsymbol{M}) \triangleq \mathbb{E}_{t,X^{\boldsymbol{v}}} \left[\| \boldsymbol{u}(X_t^{\boldsymbol{v}},t) - \boldsymbol{w}(t,\boldsymbol{v},X^{\boldsymbol{v}},\boldsymbol{M}) \|^2 \alpha(\boldsymbol{v},X^{\boldsymbol{v}}) \right]$$

where

• $\boldsymbol{u}:\mathbb{R}^d imes [0,1] o \mathbb{R}^d$ is the control

Stochastic Optimal Control problem

$$\begin{split} \min_{\boldsymbol{u}\in\mathcal{U}}\mathcal{L}(\boldsymbol{u}) &\triangleq \mathbb{E}\bigg[\int_0^T \bigg(\frac{1}{2}\|\boldsymbol{u}(X_t^{\boldsymbol{u}},t)\|^2 + f(X_t^{\boldsymbol{u}},t)\bigg)\,dt + g(X_T^{\boldsymbol{u}})\bigg],\\ \text{subject to } dX_t^{\boldsymbol{u}} &= (b(X_t^{\boldsymbol{u}},t) + \sigma(t)u(X_t^{\boldsymbol{u}},t))\,dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0^{\boldsymbol{u}} \sim p_0. \end{split}$$

Stochastic Optimal Control Matching (SOCM) [Dom+23]

$$\min_{\boldsymbol{u},\boldsymbol{M}} \mathcal{L}(\boldsymbol{u},\boldsymbol{M}) \triangleq \mathbb{E}_{t,X^{\boldsymbol{v}}} \left[\|\boldsymbol{u}(X^{\boldsymbol{v}}_t,t) - \boldsymbol{w}(t,\boldsymbol{v},X^{\boldsymbol{v}},\boldsymbol{M})\|^2 \alpha(\boldsymbol{v},X^{\boldsymbol{v}}) \right]$$

- $\boldsymbol{u}:\mathbb{R}^d imes [0,1] o \mathbb{R}^d$ is the control
- v is a fixed arbitrary control, X^v is the solution of the SDE with control v

Stochastic Optimal Control problem

$$\begin{split} \min_{u \in \mathcal{U}} \mathcal{L}(u) &\triangleq \mathbb{E} \bigg[\int_0^T \bigg(\frac{1}{2} \| u(X_t^u, t) \|^2 + f(X_t^u, t) \bigg) \, dt + g(X_T^u) \bigg], \\ \text{subject to } dX_t^u &= (b(X_t^u, t) + \sigma(t) u(X_t^u, t)) \, dt + \sqrt{\lambda} \sigma(t) dB_t, \qquad X_0^u \sim p_0. \end{split}$$

Stochastic Optimal Control Matching (SOCM) [Dom+23]

$$\min_{\boldsymbol{u},\boldsymbol{M}} \mathcal{L}(\boldsymbol{u},\boldsymbol{M}) \triangleq \mathbb{E}_{t,X^{\boldsymbol{v}}} \left[\|\boldsymbol{u}(X_t^{\boldsymbol{v}},t) - \boldsymbol{w}(t,\boldsymbol{v},X^{\boldsymbol{v}},\boldsymbol{M})\|^2 \alpha(\boldsymbol{v},X^{\boldsymbol{v}}) \right]$$

- $\pmb{u}:\mathbb{R}^d imes [0,1]
 ightarrow \mathbb{R}^d$ is the control
- v is a fixed arbitrary control, X^v is the solution of the SDE with control v
- $M: [0,1]^2
 ightarrow \mathbb{R}^{d imes d}$ is the reparameterization matrix

Stochastic Optimal Control problem

$$\begin{split} \min_{u \in \mathcal{U}} \mathcal{L}(u) &\triangleq \mathbb{E} \bigg[\int_0^T \bigg(\frac{1}{2} \| u(X_t^u, t) \|^2 + f(X_t^u, t) \bigg) \, dt + g(X_T^u) \bigg], \\ \text{subject to } dX_t^u &= (b(X_t^u, t) + \sigma(t) u(X_t^u, t)) \, dt + \sqrt{\lambda} \sigma(t) dB_t, \qquad X_0^u \sim p_0. \end{split}$$

Stochastic Optimal Control Matching (SOCM) [Dom+23]

$$\min_{\boldsymbol{u},\boldsymbol{M}} \mathcal{L}(\boldsymbol{u},\boldsymbol{M}) \triangleq \mathbb{E}_{t,X^{\boldsymbol{v}}} \left[\| \boldsymbol{u}(X_t^{\boldsymbol{v}},t) - \boldsymbol{w}(t,\boldsymbol{v},X^{\boldsymbol{v}},\boldsymbol{M}) \|^2 \alpha(\boldsymbol{v},X^{\boldsymbol{v}}) \right]$$

- $\boldsymbol{u}:\mathbb{R}^d imes [0,1]
 ightarrow\mathbb{R}^d$ is the control
- v is a fixed arbitrary control, X^v is the solution of the SDE with control v
- $M: [0,1]^2
 ightarrow \mathbb{R}^{d imes d}$ is the reparameterization matrix
- w is the matching vector field

Stochastic Optimal Control problem

$$\begin{split} \min_{u \in \mathcal{U}} \mathcal{L}(u) &\triangleq \mathbb{E} \bigg[\int_0^T \bigg(\frac{1}{2} \| u(X_t^u, t) \|^2 + f(X_t^u, t) \bigg) \, dt + g(X_T^u) \bigg], \\ \text{subject to } dX_t^u &= (b(X_t^u, t) + \sigma(t) u(X_t^u, t)) \, dt + \sqrt{\lambda} \sigma(t) dB_t, \qquad X_0^u \sim p_0. \end{split}$$

Stochastic Optimal Control Matching (SOCM) [Dom+23]

$$\min_{\boldsymbol{u},\boldsymbol{M}} \mathcal{L}(\boldsymbol{u},\boldsymbol{M}) \triangleq \mathbb{E}_{t,X^{\boldsymbol{v}}} \left[\| \boldsymbol{u}(X_t^{\boldsymbol{v}},t) - \boldsymbol{w}(t,\boldsymbol{v},X^{\boldsymbol{v}},\boldsymbol{M}) \|^2 \alpha(\boldsymbol{v},X^{\boldsymbol{v}}) \right]$$

- $\boldsymbol{u}:\mathbb{R}^d imes [0,1]
 ightarrow\mathbb{R}^d$ is the control
- v is a fixed arbitrary control, X^v is the solution of the SDE with control v
- $M: [0,1]^2
 ightarrow \mathbb{R}^{d imes d}$ is the reparameterization matrix
- w is the matching vector field
- α is the importance weight

Stochastic Optimal Control problem

$$\begin{split} & \min_{u \in \mathcal{U}} \mathcal{L}(u) \triangleq \mathbb{E} \bigg[\int_0^T \bigg(\frac{1}{2} \| u(X_t^u, t) \|^2 + f(X_t^u, t) \bigg) \, dt + g(X_T^u) \bigg], \\ & \text{subject to } dX_t^u = (b(X_t^u, t) + \sigma(t) u(X_t^u, t)) \, dt + \sqrt{\lambda} \sigma(t) dB_t, \qquad X_0^u \sim p_0. \end{split}$$

Stochastic Optimal Control Matching (SOCM) [Dom+23]

$$\min_{\boldsymbol{u},\boldsymbol{M}} \mathcal{L}(\boldsymbol{u},\boldsymbol{M}) \triangleq \mathbb{E}_{t,X^{\boldsymbol{v}}} \left[\| \boldsymbol{u}(X_t^{\boldsymbol{v}},t) - \boldsymbol{w}(t,\boldsymbol{v},X^{\boldsymbol{v}},\boldsymbol{M}) \|^2 \alpha(\boldsymbol{v},X^{\boldsymbol{v}}) \right]$$

- $\pmb{u}:\mathbb{R}^d imes [0,1]
 ightarrow\mathbb{R}^d$ is the control
- v is a fixed arbitrary control, X^{v} is the solution of the SDE with control v
- $M: [0,1]^2
 ightarrow \mathbb{R}^{d imes d}$ is the reparameterization matrix
- w is the matching vector field
- α is the importance weight
- *w* and α depend on *f*, *g*, λ , σ (full expressions later on).

Some details on SOCM

Stochastic Optimal Control Matching (SOCM) [Dom+23]

 $\min_{\boldsymbol{u},\boldsymbol{M}} \mathcal{L}(\boldsymbol{u},\boldsymbol{M}) \triangleq \mathbb{E}_{t,X^{\boldsymbol{v}}} \big[\| \boldsymbol{u}(X_t^{\boldsymbol{v}},t) - \boldsymbol{w}(t,\boldsymbol{v},X^{\boldsymbol{v}},\boldsymbol{M}) \|^2 \alpha(\boldsymbol{v},X^{\boldsymbol{v}}) \big],$

Some details on SOCM

Stochastic Optimal Control Matching (SOCM) [Dom+23]

 $\min_{\boldsymbol{u},\boldsymbol{M}} \mathcal{L}(\boldsymbol{u},\boldsymbol{M}) \triangleq \mathbb{E}_{t,X^{\boldsymbol{v}}} \big[\| \boldsymbol{u}(X_t^{\boldsymbol{v}},t) - \boldsymbol{w}(t,\boldsymbol{v},X^{\boldsymbol{v}},\boldsymbol{M}) \|^2 \alpha(\boldsymbol{v},X^{\boldsymbol{v}}) \big],$

 How to derive SOCM? The optimal control admits an analytic expression as the score (gradient of logarithm) of an unnormalized density! Similar to score-based diffusion.
Some details on SOCM

Stochastic Optimal Control Matching (SOCM) [Dom+23]

 $\min_{\boldsymbol{u},\boldsymbol{M}} \mathcal{L}(\boldsymbol{u},\boldsymbol{M}) \triangleq \mathbb{E}_{t,X^{\boldsymbol{v}}} \big[\| \boldsymbol{u}(X_t^{\boldsymbol{v}},t) - \boldsymbol{w}(t,\boldsymbol{v},X^{\boldsymbol{v}},\boldsymbol{M}) \|^2 \alpha(\boldsymbol{v},X^{\boldsymbol{v}}) \big],$

- How to derive SOCM? The optimal control admits an analytic expression as the score (gradient of logarithm) of an unnormalized density! Similar to score-based diffusion.
- Key idea: *path-wise reparameterization trick*, a novel technique to reexpress the gradient of a conditional expectation.

Stochastic Optimal Control Matching (SOCM) [Dom+23]

 $\min_{\boldsymbol{u},\boldsymbol{M}} \mathcal{L}(\boldsymbol{u},\boldsymbol{M}) \triangleq \mathbb{E}_{t,X^{\boldsymbol{v}}} \big[\| \boldsymbol{u}(X_t^{\boldsymbol{v}},t) - \boldsymbol{w}(t,\boldsymbol{v},X^{\boldsymbol{v}},\boldsymbol{M}) \|^2 \alpha(\boldsymbol{v},X^{\boldsymbol{v}}) \big],$

- How to derive SOCM? The optimal control admits an analytic expression as the score (gradient of logarithm) of an unnormalized density! Similar to score-based diffusion.
- Key idea: *path-wise reparameterization trick*, a novel technique to reexpress the gradient of a conditional expectation.
- What is the role of the reparameterization matrix M?

$$\mathcal{L}(u, M) = \underbrace{\mathbb{E}_{t, X^{\mathbf{v}}} \left[\|u(X_t^{\mathbf{v}}, t) - u^*(X_t^{\mathbf{v}}, t)\|^2 \alpha(v, X^{\mathbf{v}}, B) \right]}_{L^2 \text{ error of } u} + \underbrace{\mathbb{E}_{t, X^{\mathbf{v}}} \left[\left\| w(t, v, X^{\mathbf{v}}, B, M_t) - \frac{\mathbb{E}[w(t, v, X^{\mathbf{v}}, B, M_t)\alpha(v, X^{\mathbf{v}}, B)|t, X_t^{\mathbf{v}}]}{\mathbb{E}[\alpha(v, X^{\mathbf{v}}, B)|t, X_t^{\mathbf{v}}]} \right\|^2 \alpha(v, X^{\mathbf{v}}, B) \right]}_{\mathbf{v}}$$

Conditional variance of w

We train M to minimize the conditional variance of the matching vector field w.

Stochastic Optimal Control Matching (SOCM) [Dom+23]

 $\min_{\boldsymbol{u},\boldsymbol{M}} \mathcal{L}(\boldsymbol{u},\boldsymbol{M}) \triangleq \mathbb{E}_{t,X^{\boldsymbol{v}}} \big[\| \boldsymbol{u}(X_t^{\boldsymbol{v}},t) - \boldsymbol{w}(t,\boldsymbol{v},X^{\boldsymbol{v}},\boldsymbol{M}) \|^2 \alpha(\boldsymbol{v},X^{\boldsymbol{v}}) \big],$

- How to derive SOCM? The optimal control admits an analytic expression as the score (gradient of logarithm) of an unnormalized density! Similar to score-based diffusion.
- Key idea: *path-wise reparameterization trick*, a novel technique to reexpress the gradient of a conditional expectation.
- What is the role of the reparameterization matrix M?

$$\mathcal{L}(\boldsymbol{u},\boldsymbol{M}) = \underbrace{\mathbb{E}_{t,X^{\mathbf{v}}}\left[\|\boldsymbol{u}(X_{t}^{\mathbf{v}},t) - \boldsymbol{u}^{*}(X_{t}^{\mathbf{v}},t)\|^{2}\alpha(\boldsymbol{v},X^{\mathbf{v}},B)\right]}_{L^{2} \text{ error of }\boldsymbol{u}} + \underbrace{\mathbb{E}_{t,X^{\mathbf{v}}}\left[\|\boldsymbol{w}(t,\boldsymbol{v},X^{\mathbf{v}},B,\boldsymbol{M}_{t}) - \frac{\mathbb{E}[\boldsymbol{w}(t,\boldsymbol{v},X^{\mathbf{v}},B,\boldsymbol{M}_{t})\alpha(\boldsymbol{v},X^{\mathbf{v}},B)|t,X_{t}^{\mathbf{v}}]}{\mathbb{E}[\alpha(\boldsymbol{v},X^{\mathbf{v}},B)|t,X_{t}^{\mathbf{v}}]}\right\|^{2}\alpha(\boldsymbol{v},X^{\mathbf{v}},B)}$$

Conditional variance of w

We train M to minimize the conditional variance of the matching vector field w.

How do we choose ν? We want ν such that α(ν, X^ν) has low variance. In general, we take ν to be the current learned control u.

Settings:

- Quadratic Ornstein Uhlenbeck / Linear Quadratic Regulator: Linear base drift *b*, quadratic state cost *f*, quadratic terminal cost *g*
- Linear Ornstein Uhlenbeck: Linear base drift *b*, quadratic state cost *f*, linear terminal cost *g*
- Double Well: terminal cost g is minus log-density of high-dimensional double well (2^d modes).

Settings:

- Quadratic Ornstein Uhlenbeck / Linear Quadratic Regulator: Linear base drift *b*, quadratic state cost *f*, quadratic terminal cost *g*
- Linear Ornstein Uhlenbeck: Linear base drift *b*, quadratic state cost *f*, linear terminal cost *g*
- Double Well: terminal cost g is minus log-density of high-dimensional double well (2^d modes).

Baselines:

- Adjoint method [Pon62]
- Cross-entropy loss [Zha+14]
- Log-variance loss [NR23]
- Variance loss [NR23]
- Moment loss [WHJ17; HJE18]

Settings:

- Quadratic Ornstein Uhlenbeck / Linear Quadratic Regulator: Linear base drift *b*, quadratic state cost *f*, quadratic terminal cost *g*
- Linear Ornstein Uhlenbeck: Linear base drift *b*, quadratic state cost *f*, linear terminal cost *g*
- Double Well: terminal cost g is minus log-density of high-dimensional double well (2^d modes).

Baselines:

- Adjoint method [Pon62]
- Cross-entropy loss [Zha+14]
- Log-variance loss [NR23]
- Variance loss [NR23]
- Moment loss [WHJ17; HJE18]

Ablations:

- SOCM with constant $M_t = Id$
- SOCM-Adjoint: modification of SOCM where the adjoint method is used instead of the path-wise reparameterization trick

Experiments: Control L² error

Control L^2 error: $\mathbb{E}_{t,X^{\nu}}\left[\|u(X_t^{\nu},t)-u^*(X_t^{\nu},t)\|^2\alpha(\nu,X^{\nu},B)\right]/\mathbb{E}_{t,X^{\nu}}\left[\alpha(\nu,X^{\nu},B)\right]$

Experiments: Control L² error

Control L^2 error: $\mathbb{E}_{t,X^{\mathbf{v}}}\left[\|u(X_t^{\mathbf{v}},t)-u^*(X_t^{\mathbf{v}},t)\|^2 \alpha(\mathbf{v},X^{\mathbf{v}},B)\right]/\mathbb{E}_{t,X^{\mathbf{v}}}\left[\alpha(\mathbf{v},X^{\mathbf{v}},B)\right]$

Experiments: Importance weight variance

Importance weight variance: $\operatorname{Var}[\alpha(u, X^u, B)] / \mathbb{E}[\alpha(u, X^u, B)] = \operatorname{Var}[F(X^u) \frac{d\mathbb{P}}{d\mathbb{P}^u}(X^u)]$

Experiments: Importance weight variance

Importance weight variance: $\operatorname{Var}[\alpha(u, X^u, B)] / \mathbb{E}[\alpha(u, X^u, B)] = \operatorname{Var}[F(X^u) \frac{d\mathbb{P}}{d\mathbb{P}^u}(X^u)]$

Experiments: Training loss for SOCM and ablations

 $\mathcal{L}(u, M) = L^2$ error of u + Conditional variance of w

Experiments: Training loss for SOCM and ablations

 $\mathcal{L}(u, M) = L^2$ error of u + Conditional variance of w

Introduction

Stochastic Optimal Control Matching

Key ideas

• X^u is the process controlled by u; it is the solution of

$$dX_t^{\boldsymbol{u}} = (b(X_t^{\boldsymbol{u}},t) + \sigma(t)\boldsymbol{u}(X_t^{\boldsymbol{u}},t)) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0^{\boldsymbol{u}} \sim p_0.$$

• X is the uncontrolled process; it is the solution of

$$dX_t = b(X_t, t) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0 \sim p_0.$$

• X^u is the process controlled by u; it is the solution of

$$dX_t^{\boldsymbol{u}} = (b(X_t^{\boldsymbol{u}},t) + \sigma(t)\boldsymbol{u}(X_t^{\boldsymbol{u}},t)) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0^{\boldsymbol{u}} \sim p_0.$$

• X is the uncontrolled process; it is the solution of

$$dX_t = b(X_t, t) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0 \sim p_0.$$

Lemma (Path-integral representation of the optimal control)

The optimal control u^* satisfies $u^*(x,t) = \lambda \sigma(t)^\top \nabla_x \log \mathbb{E} \left[\exp\left(-\lambda^{-1} \int_t^T f(X_s,s) \, \mathrm{d}s - \lambda^{-1} g(X_T) \right) | X_t = x \right].$ (5)

• X^u is the process controlled by u; it is the solution of

$$dX_t^{\boldsymbol{u}} = (b(X_t^{\boldsymbol{u}},t) + \sigma(t)\boldsymbol{u}(X_t^{\boldsymbol{u}},t)) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0^{\boldsymbol{u}} \sim p_0.$$

• X is the uncontrolled process; it is the solution of

$$dX_t = b(X_t, t) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0 \sim p_0.$$

Lemma (Path-integral representation of the optimal control)

The optimal control u^* satisfies $u^*(x,t) = \lambda \sigma(t)^\top \nabla_x \log \mathbb{E} \left[\exp\left(-\lambda^{-1} \int_t^T f(X_s,s) \, \mathrm{d}s - \lambda^{-1} g(X_T) \right) | X_t = x \right].$ (5)

• X^u is the process controlled by u; it is the solution of

$$dX_t^{\boldsymbol{u}} = (b(X_t^{\boldsymbol{u}},t) + \sigma(t)\boldsymbol{u}(X_t^{\boldsymbol{u}},t)) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0^{\boldsymbol{u}} \sim p_0.$$

• X is the uncontrolled process; it is the solution of

$$dX_t = b(X_t, t) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0 \sim p_0.$$

Lemma (Path-integral representation of the optimal control)

The optimal control u^* satisfies $u^*(x,t) = \lambda \sigma(t)^\top \nabla_x \log \mathbb{E} \left[\exp \left(-\lambda^{-1} \int_t^T f(X_s,s) \, \mathrm{d}s - \lambda^{-1} g(X_T) \right) \middle| X_t = x \right].$ (5)

Consider the loss
$$\begin{split} \tilde{\mathcal{L}}(u) &= \mathbb{E}\big[\frac{1}{T}\int_0^T \left\| u(X_t,t) - u^*(X_t,t) \right\|^2 \mathrm{d}t \, \exp\big(-\lambda^{-1}\int_0^T f(X_t,t) \, \mathrm{d}t - \lambda^{-1}g(X_T)\big)\big] \\ &= \mathbb{E}\big[\frac{1}{T}\int_0^T \left(\left\| u(X_t,t) \right\|^2 - 2\langle u(X_t,t), u^*(X_t,t) \rangle + \left\| u^*(X_t,t) \right\|^2 \right) \mathrm{d}t \\ &\qquad \times \exp\big(-\lambda^{-1}\int_0^T f(X_t,t) \, \mathrm{d}t - \lambda^{-1}g(X_T)\big)\big]. \end{split}$$

• X^u is the process controlled by u; it is the solution of

$$dX_t^{\boldsymbol{u}} = (b(X_t^{\boldsymbol{u}},t) + \sigma(t)\boldsymbol{u}(X_t^{\boldsymbol{u}},t)) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0^{\boldsymbol{u}} \sim p_0.$$

• X is the uncontrolled process; it is the solution of

$$dX_t = b(X_t, t) dt + \sqrt{\lambda}\sigma(t)dB_t, \qquad X_0 \sim p_0.$$

Lemma (Path-integral representation of the optimal control)

The optimal control u^* satisfies $u^*(x,t) = \lambda \sigma(t)^\top \nabla_x \log \mathbb{E} \left[\exp \left(-\lambda^{-1} \int_t^T f(X_s,s) \, \mathrm{d}s - \lambda^{-1} g(X_T) \right) | X_t = x \right].$ (5)

Consider the loss $\tilde{\mathcal{L}}(\boldsymbol{u}) = \mathbb{E}\left[\frac{1}{T}\int_{0}^{T} \left\|\boldsymbol{u}(X_{t},t) - \boldsymbol{u}^{*}(X_{t},t)\right\|^{2} \mathrm{d}t \exp\left(-\lambda^{-1}\int_{0}^{T} f(X_{t},t) \,\mathrm{d}t - \lambda^{-1}g(X_{T})\right)\right]$ $= \mathbb{E}\left[\frac{1}{T}\int_{0}^{T} \left(\left\|\boldsymbol{u}(X_{t},t)\right\|^{2} - 2\langle \boldsymbol{u}(X_{t},t), \boldsymbol{u}^{*}(X_{t},t)\rangle + \left\|\boldsymbol{u}^{*}(X_{t},t)\right\|^{2}\right) \mathrm{d}t$ $\times \exp\left(-\lambda^{-1}\int_{0}^{T} f(X_{t},t) \,\mathrm{d}t - \lambda^{-1}g(X_{T})\right)\right].$

The only optimum of this loss is u^* . Using equation (5), the cross-term can be rewritten as:

5

To evaluate the derivative of the conditional expectation, we use:

Proposition (Path-wise reparameterization trick for stochastic optimal control) For each $t \in [0, T]$, let $M_t : [t, T] \to \mathbb{R}^{d \times d}$ be an arbitrary continuously differentiable function matrix-valued function such that $M_t(t) = \mathrm{Id}$. We have that $\nabla_x \mathbb{E} \Big[\exp \big(-\lambda^{-1} \int_t^T f(X_s, s) \, \mathrm{d}s - \lambda^{-1}g(X_T) \big) \big| X_t = x \Big]$ $= \mathbb{E} \Big[\big(-\lambda^{-1} \int_t^T M_t(s) \nabla_x f(X_s, s) \, \mathrm{d}s - \lambda^{-1} M_t(T) \nabla g(X_T) + \lambda^{-1/2} \int_t^T (M_t(s) \nabla_x b(X_s, s) - \partial_s M_t(s)) (\sigma^{-1})^\top (X_s, s) \mathrm{d}B_s \big)$ $\times \exp \big(-\lambda^{-1} \int_t^T f(X_s, s) \, \mathrm{d}s - \lambda^{-1}g(X_T) \big) \big| X_t = x \Big].$ (6)

Using (6) and completing the square, we obtain that for some constant K independent of u,

$$\begin{split} \tilde{\mathcal{L}}(\boldsymbol{u}) &= \mathbb{E} \Big[\frac{1}{T} \int_{0}^{T} \big\| \boldsymbol{u}(\boldsymbol{X}_{t}, t) + \sigma(t) \big(\int_{t}^{T} \boldsymbol{M}_{t}(s) \nabla_{\boldsymbol{X}} f(\boldsymbol{X}_{s}, s) \, \mathrm{d}s + \boldsymbol{M}_{t}(T) \nabla \boldsymbol{g}(\boldsymbol{X}_{T}) \\ &- \lambda^{1/2} \int_{t}^{T} \big(\boldsymbol{M}_{t}(s) \nabla_{\boldsymbol{X}} \boldsymbol{b}(\boldsymbol{X}_{s}, s) - \partial_{s} \boldsymbol{M}_{t}(s)) (\sigma^{-1})^{\top} (\boldsymbol{X}_{s}, s) \mathrm{d}\boldsymbol{B}_{s} \big) \big\|^{2} \, \mathrm{d}t \\ &\times \exp \big(- \lambda^{-1} \int_{0}^{T} f(\boldsymbol{X}_{t}, t) \, \mathrm{d}t - \lambda^{-1} \boldsymbol{g}(\boldsymbol{X}_{T}) \big) \big] + \boldsymbol{K}. \end{split}$$

If we perform a change of process from X to X^{v} by applying the Girsanov theorem, where v is arbitrary, we obtain the loss $\mathcal{L}_{SOCM}(u, M)$.

Stochastic Optimal Control Matching (SOCM) [Dom+23]

$$\min_{u,\mathbf{M}} \mathcal{L}(u,\mathbf{M}) \triangleq \mathbb{E}_{t,X^{\mathbf{v}}} \big[\| u(X_t^{\mathbf{v}},t) - w(t,\mathbf{v},X^{\mathbf{v}},\mathbf{M}) \|^2 \alpha(\mathbf{v},X^{\mathbf{v}}) \big]$$

$$w(t, \mathbf{v}, X^{\mathbf{v}}, \mathbf{M}) = -\int_{t}^{T} \mathbf{M}(t, s) \nabla_{x} f(X_{s}^{\mathbf{v}}, s) \, ds - \mathbf{M}(t, T) \nabla g(X_{T}^{\mathbf{v}}) -\int_{t}^{T} (\mathbf{M}(t, s) \nabla_{x} b(X_{s}^{\mathbf{v}}, s) - \partial_{s} \mathbf{M}(t, s)) \mathbf{v}(X_{s}^{\mathbf{v}}, s) \, ds - \sqrt{\lambda} \int_{t}^{T} (\mathbf{M}(t, s) \nabla_{x} b(X_{s}^{\mathbf{v}}, s) - \partial_{s} \mathbf{M}(t, s)) \, dB_{s}, \alpha(\mathbf{v}, X^{\mathbf{v}}) = \exp\left(-\frac{1}{\lambda} \int_{0}^{T} f(X_{t}^{\mathbf{v}}, t) \, ds - \frac{1}{\lambda} g(X_{T}^{\mathbf{v}}) - \frac{1}{\sqrt{\lambda}} \int_{0}^{T} \langle \mathbf{v}(X_{t}^{\mathbf{v}}, t), dB_{t} \rangle - \frac{1}{2\lambda} \int_{0}^{T} \|\mathbf{v}(X_{t}^{\mathbf{v}}, t)\|^{2} \, dt\right)$$

• Test and benchmark SOCM as an algorithm to sample from unnormalized densities

- Test and benchmark SOCM as an algorithm to sample from unnormalized densities
- Test and benchmark SOCM as an importance sampling algorithm for stopped diffusions (more in backup slides)

- Test and benchmark SOCM as an algorithm to sample from unnormalized densities
- Test and benchmark SOCM as an importance sampling algorithm for stopped diffusions (more in backup slides)

Technical improvements of SOCM

• Make reparameterization matrix M depend to the controlled process X^{ν} .

- Test and benchmark SOCM as an algorithm to sample from unnormalized densities
- Test and benchmark SOCM as an importance sampling algorithm for stopped diffusions (more in backup slides)

Technical improvements of SOCM

- Make reparameterization matrix M depend to the controlled process X^{ν} .
- Test alternative way to use Girsanov theorem to lower the gradient variance when learning controls: explicit perturbations ψ . It can be combined with the path-wise reparameterization trick and also applied to other methods like the adjoint, cross-entropy, log-variance...

• The PWRT can be used to *generalize conditional score matching* to diffusion processes with generic drifts.

- The PWRT can be used to *generalize conditional score matching* to diffusion processes with generic drifts.
- I.e., we can learn ∇ log pt for X s.t. dXt = b(Xt, t) dt + σ(t) dBt using a least-squares loss (previously only *implicit score matching* was available).

- The PWRT can be used to *generalize conditional score matching* to diffusion processes with generic drifts.
- I.e., we can learn ∇ log pt for X s.t. dXt = b(Xt, t) dt + σ(t) dBt using a least-squares loss (previously only *implicit score matching* was available).
- When we set a linear drift b(x, t) = -A(t)x, we recover standard *conditional* score matching.

- The PWRT can be used to *generalize conditional score matching* to diffusion processes with generic drifts.
- I.e., we can learn ∇ log pt for X s.t. dXt = b(Xt, t) dt + σ(t) dBt using a least-squares loss (previously only *implicit score matching* was available).
- When we set a linear drift b(x, t) = -A(t)x, we recover standard *conditional* score matching.

PWRT for Neural SDEs

 Reminder: Neural SDEs are the SDE analog of Neural ODEs, they use the adjoint method.

- The PWRT can be used to *generalize conditional score matching* to diffusion processes with generic drifts.
- I.e., we can learn ∇ log pt for X s.t. dXt = b(Xt, t) dt + σ(t) dBt using a least-squares loss (previously only *implicit score matching* was available).
- When we set a linear drift b(x, t) = -A(t)x, we recover standard *conditional* score matching.

PWRT for Neural SDEs

- Reminder: Neural SDEs are the SDE analog of Neural ODEs, they use the adjoint method.
- We can replace the adjoint method by PWRT.

Consider the Euler-Maruyama discretization $\hat{X} = (\hat{X}_k)_{k=0:K}$ of the uncontrolled process X with K + 1 time steps (let $\delta = T/K$ be the step size):

$$\hat{X}_0 \sim p_0, \qquad \hat{X}_{k+1} = \hat{X}_k + \delta b(\hat{X}_k, k\delta) + \sqrt{\delta\lambda}\sigma(k\delta)\varepsilon_k, \qquad \varepsilon_k \sim N(0, I).$$

Consider the Euler-Maruyama discretization $\hat{X} = (\hat{X}_k)_{k=0:K}$ of the uncontrolled process X with K + 1 time steps (let $\delta = T/K$ be the step size):

 $\hat{X}_0 \sim p_0, \qquad \hat{X}_{k+1} = \hat{X}_k + \delta b(\hat{X}_k, k\delta) + \sqrt{\delta\lambda}\sigma(k\delta)\varepsilon_k, \qquad \varepsilon_k \sim N(0, I).$ We can approximate

$$\begin{split} & \mathbb{E}\big[\exp\big(-\lambda^{-1}\int_{t}^{T}f(X_{s},s)\,\mathrm{d}s-\lambda^{-1}g(X_{T})\big)\big|X_{t}=x\big]\\ & \approx \mathbb{E}\big[\exp\big(-\lambda^{-1}\delta\sum_{k=0}^{K-1}f(\hat{X}_{k},s)-\lambda^{-1}g(\hat{X}_{K})\big)\big|\hat{X}_{0}=x\big], \end{split}$$

Consider the Euler-Maruyama discretization $\hat{X} = (\hat{X}_k)_{k=0:K}$ of the uncontrolled process X with K + 1 time steps (let $\delta = T/K$ be the step size):

 $\hat{X}_0 \sim p_0, \qquad \hat{X}_{k+1} = \hat{X}_k + \delta b(\hat{X}_k, k\delta) + \sqrt{\delta\lambda}\sigma(k\delta)\varepsilon_k, \qquad \varepsilon_k \sim N(0, I).$ We can approximate

$$\mathbb{E}\Big[\exp\big(-\lambda^{-1}\int_{t}^{T}f(X_{s},s)\,\mathrm{d}s-\lambda^{-1}g(X_{T})\big)\big|X_{t}=x\Big]$$

$$\approx\mathbb{E}\Big[\exp\big(-\lambda^{-1}\delta\sum_{k=0}^{K-1}f(\hat{X}_{k},s)-\lambda^{-1}g(\hat{X}_{K})\big)\big|\hat{X}_{0}=x\Big],$$

Remark that for $k \in \{0, ..., K-1\}$, $\hat{X}_{k+1} | \hat{X}_k \sim N(\hat{X}_k + \delta b(\hat{X}_k, k\delta), \delta \lambda(\sigma \sigma^{\top})(k\delta))$. Hence,

$$\mathbb{E}\left[\exp\left(-\lambda^{-1}\delta\sum_{k=0}^{K-1}f(\hat{X}_{k},s)-\lambda^{-1}g(\hat{X}_{K})\right)|\hat{X}_{0}=x\right]$$

$$=C^{-1}\iint_{(\mathbb{R}^{d})^{K}}\exp\left(-\lambda^{-1}\delta\sum_{k=0}^{K-1}f(\hat{x}_{k},s)-\lambda^{-1}g(\hat{x}_{K})-\frac{1}{2\delta\lambda}\sum_{k=1}^{K-1}\|\sigma^{-1}(k\delta)(\hat{x}_{k+1}-\hat{x}_{k}-\delta b(\hat{x}_{k},k\delta))\|^{2}-\frac{1}{2\delta\lambda}\|\sigma^{-1}(0)(\hat{x}_{1}-x-\delta b(x,0))\|^{2}\right)d\hat{x}_{1}\cdots d\hat{x}_{K},$$
where $C=\sqrt{(2\pi\delta\lambda)^{K}\prod_{k=0}^{K-1}\det((\sigma\sigma^{\top})(k\delta))}.$

$$(7)$$

We can write $\nabla_{\mathbf{x}} \mathbb{E}\big[\exp\big(-\lambda^{-1}\delta\sum_{k=0}^{K-1}f(\hat{X}_k,s)-\lambda^{-1}g(\hat{X}_K)\big)|\hat{X}_0=x\big]$

We can write $\begin{aligned} \nabla_{x} \mathbb{E} \Big[\exp \left(-\lambda^{-1} \delta \sum_{k=0}^{K-1} f(\hat{X}_{k}, s) - \lambda^{-1} g(\hat{X}_{K}) \right) | \hat{X}_{0} = x \Big] \\ &= \nabla_{z} \mathbb{E} \Big[\exp \left(-\lambda^{-1} \delta \sum_{k=0}^{K-1} f(\hat{X}_{k}, s) - \lambda^{-1} g(\hat{X}_{K}) \right) | \hat{X}_{0} = x + z \Big]_{z=0} \end{aligned}$

We can write

$$\begin{aligned} \nabla_{x} \mathbb{E} \Big[\exp \left(-\lambda^{-1} \delta \sum_{k=0}^{K-1} f(\hat{X}_{k}, s) - \lambda^{-1} g(\hat{X}_{K}) \right) | \hat{X}_{0} = x \Big] \\ &= \nabla_{z} \mathbb{E} \Big[\exp \left(-\lambda^{-1} \delta \sum_{k=0}^{K-1} f(\hat{X}_{k}, s) - \lambda^{-1} g(\hat{X}_{K}) \right) | \hat{X}_{0} = x + z \Big] |_{z=0} \\ &= C^{-1} \nabla_{z} \Big(\iint_{(\mathbb{R}^{d})^{K}} \exp \left(-\lambda^{-1} \delta \sum_{k=0}^{K-1} f(\hat{x}_{k}, s) - \lambda^{-1} g(\hat{x}_{K}) \right) \\ &\quad - \frac{1}{2\delta\lambda} \sum_{k=1}^{K-1} \| \sigma^{-1} (k\delta) (\hat{x}_{k+1} - \hat{x}_{k} - \delta b(\hat{x}_{k}, k\delta)) \|^{2} \\ &\quad - \frac{1}{2\delta\lambda} \| \sigma^{-1} (0) (\hat{x}_{1} - (x+z) - \delta b(x+z, 0)) \|^{2} \Big] \, \mathrm{d}\hat{x}_{1} \cdots \mathrm{d}\hat{x}_{K} \Big) |_{z=0} \end{aligned}$$

We can write

$$\begin{aligned} \nabla_{x} \mathbb{E} \Big[\exp \left(-\lambda^{-1} \delta \sum_{k=0}^{K-1} f(\hat{X}_{k}, s) - \lambda^{-1} g(\hat{X}_{K}) \right) | \hat{X}_{0} = x \Big] \\ &= \nabla_{z} \mathbb{E} \Big[\exp \left(-\lambda^{-1} \delta \sum_{k=0}^{K-1} f(\hat{X}_{k}, s) - \lambda^{-1} g(\hat{X}_{K}) \right) | \hat{X}_{0} = x + z \Big] |_{z=0} \\ &= C^{-1} \nabla_{z} \Big(\iint_{(\mathbb{R}^{d})^{K}} \exp \left(-\lambda^{-1} \delta \sum_{k=0}^{K-1} f(\hat{x}_{k}, s) - \lambda^{-1} g(\hat{x}_{K}) \right) \\ &\quad - \frac{1}{2\delta\lambda} \sum_{k=1}^{K-1} \| \sigma^{-1} (k\delta) (\hat{x}_{k+1} - \hat{x}_{k} - \delta b(\hat{x}_{k}, k\delta)) \|^{2} \\ &\quad - \frac{1}{2\delta\lambda} \| \sigma^{-1} (0) (\hat{x}_{1} - (x+z) - \delta b(x+z, 0)) \|^{2}) d\hat{x}_{1} \cdots d\hat{x}_{K} \big| |_{z=0} \end{aligned}$$

$$&= C^{-1} \nabla_{z} \Big(\iint_{(\mathbb{R}^{d})^{K}} \exp \left(-\lambda^{-1} \delta \sum_{k=0}^{K-1} f(\hat{x}_{k} + \psi(z, k\delta), s) - \lambda^{-1} g(\hat{x}_{K} + \psi(z, K\delta)) \right) \\ &\quad - \frac{1}{2\delta\lambda} \sum_{k=1}^{K-1} \| \sigma^{-1} (k\delta) (\hat{x}_{k+1} + \psi(z, (k+1)\delta) - \hat{x}_{k} - \psi(z, k\delta) - \delta b(\hat{x}_{k} + \psi(z, k\delta), k\delta)) \|^{2} \\ &\quad - \frac{1}{2\delta\lambda} \| \sigma^{-1} (0) (\hat{x}_{1} + \psi(z, \delta) - (x + \psi(z, 0)) - \delta b(x + \psi(z, 0), 0)) \|^{2}) d\hat{x}_{1} \cdots d\hat{x}_{K} \big|_{z=0}, \end{aligned}$$

• In the last equality, $\psi : \mathbb{R}^d \times [0, T] \to \mathbb{R}^d$ is an arbitrary twice differentiable function such that $\psi(z, 0) = z$ for all $z \in \mathbb{R}^d$, and $\psi(0, s) = 0$ for all $s \in [0, T]$.
Informal derivation of the path-wise reparameterization trick (2/2)

We can write

$$\begin{aligned} \nabla_{x} \mathbb{E} \Big[\exp \left(-\lambda^{-1} \delta \sum_{k=0}^{K-1} f(\hat{X}_{k}, s) - \lambda^{-1} g(\hat{X}_{K}) \right) | \hat{X}_{0} = x \Big] \\ &= \nabla_{z} \mathbb{E} \Big[\exp \left(-\lambda^{-1} \delta \sum_{k=0}^{K-1} f(\hat{X}_{k}, s) - \lambda^{-1} g(\hat{X}_{K}) \right) | \hat{X}_{0} = x + z \Big] |_{z=0} \\ &= C^{-1} \nabla_{z} \Big(\iint_{(\mathbb{R}^{d})^{K}} \exp \left(-\lambda^{-1} \delta \sum_{k=0}^{K-1} f(\hat{x}_{k}, s) - \lambda^{-1} g(\hat{x}_{K}) \right) \\ &\quad - \frac{1}{2\delta\lambda} \sum_{k=1}^{K-1} \| \sigma^{-1} (k\delta) (\hat{x}_{k+1} - \hat{x}_{k} - \delta b(\hat{x}_{k}, k\delta)) \|^{2} \\ &\quad - \frac{1}{2\delta\lambda} \| \sigma^{-1} (0) (\hat{x}_{1} - (x+z) - \delta b(x+z, 0)) \|^{2}) d\hat{x}_{1} \cdots d\hat{x}_{K} \big| |_{z=0} \end{aligned}$$

$$&= C^{-1} \nabla_{z} \Big(\iint_{(\mathbb{R}^{d})^{K}} \exp \left(-\lambda^{-1} \delta \sum_{k=0}^{K-1} f(\hat{x}_{k} + \psi(z, k\delta), s) - \lambda^{-1} g(\hat{x}_{K} + \psi(z, K\delta)) \right) \\ &\quad - \frac{1}{2\delta\lambda} \sum_{k=1}^{K-1} \| \sigma^{-1} (k\delta) (\hat{x}_{k+1} + \psi(z, (k+1)\delta) - \hat{x}_{k} - \psi(z, k\delta) - \delta b(\hat{x}_{k} + \psi(z, k\delta), k\delta)) \|^{2} \\ &\quad - \frac{1}{2\delta\lambda} \| \sigma^{-1} (0) (\hat{x}_{1} + \psi(z, \delta) - (x + \psi(z, 0)) - \delta b(x + \psi(z, 0), 0)) \|^{2} \Big) d\hat{x}_{1} \cdots d\hat{x}_{K} \Big) |_{z=0}, \end{aligned}$$

- In the last equality, $\psi : \mathbb{R}^d \times [0, T] \to \mathbb{R}^d$ is an arbitrary twice differentiable function such that $\psi(z, 0) = z$ for all $z \in \mathbb{R}^d$, and $\psi(0, s) = 0$ for all $s \in [0, T]$.
- We used that for k ∈ {1,..., K}, the variables x̂_k are integrated over ℝ^d, which means that adding an offset ψ(z, kδ) does not change the value of the integral. We also used that ψ(z, 0) = z.

Informal derivation of the path-wise reparameterization trick (2/2)

We can write

$$\begin{aligned} \nabla_{x} \mathbb{E} \Big[\exp \left(-\lambda^{-1} \delta \sum_{k=0}^{K-1} f(\hat{X}_{k}, s) - \lambda^{-1} g(\hat{X}_{K}) \right) | \hat{X}_{0} = x \Big] \\ &= \nabla_{z} \mathbb{E} \Big[\exp \left(-\lambda^{-1} \delta \sum_{k=0}^{K-1} f(\hat{X}_{k}, s) - \lambda^{-1} g(\hat{X}_{K}) \right) | \hat{X}_{0} = x + z \Big] |_{z=0} \\ &= C^{-1} \nabla_{z} \Big(\iint_{(\mathbb{R}^{d})^{K}} \exp \left(-\lambda^{-1} \delta \sum_{k=0}^{K-1} f(\hat{x}_{k}, s) - \lambda^{-1} g(\hat{x}_{K}) \right) \\ &\quad - \frac{1}{2\delta\lambda} \sum_{k=1}^{K-1} \| \sigma^{-1} (k\delta) (\hat{x}_{k+1} - \hat{x}_{k} - \delta b(\hat{x}_{k}, k\delta)) \|^{2} \\ &\quad - \frac{1}{2\delta\lambda} \| \sigma^{-1} (0) (\hat{x}_{1} - (x+z) - \delta b(x+z, 0)) \|^{2}) d\hat{x}_{1} \cdots d\hat{x}_{K} \big| |_{z=0} \end{aligned}$$

$$&= C^{-1} \nabla_{z} \Big(\iint_{(\mathbb{R}^{d})^{K}} \exp \left(-\lambda^{-1} \delta \sum_{k=0}^{K-1} f(\hat{x}_{k} + \psi(z, k\delta), s) - \lambda^{-1} g(\hat{x}_{K} + \psi(z, K\delta)) \right) \\ &\quad - \frac{1}{2\delta\lambda} \sum_{k=1}^{K-1} \| \sigma^{-1} (k\delta) (\hat{x}_{k+1} + \psi(z, (k+1)\delta) - \hat{x}_{k} - \psi(z, k\delta) - \delta b(\hat{x}_{k} + \psi(z, k\delta), k\delta)) \|^{2} \\ &\quad - \frac{1}{2\delta\lambda} \| \sigma^{-1} (0) (\hat{x}_{1} + \psi(z, \delta) - (x + \psi(z, 0)) - \delta b(x + \psi(z, 0), 0)) \|^{2} \Big) d\hat{x}_{1} \cdots d\hat{x}_{K} \Big) |_{z=0}, \end{aligned}$$

- In the last equality, $\psi : \mathbb{R}^d \times [0, T] \to \mathbb{R}^d$ is an arbitrary twice differentiable function such that $\psi(z, 0) = z$ for all $z \in \mathbb{R}^d$, and $\psi(0, s) = 0$ for all $s \in [0, T]$.
- We used that for k ∈ {1,..., K}, the variables λ_k are integrated over ℝ^d, which means that adding an offset ψ(z, kδ) does not change the value of the integral. We also used that ψ(z, 0) = z.
- To conclude the proof, we differentiate with respect to z under the integral sign, and define $M(s) = \nabla \psi(z, s)|_{z=0}$.

Content of the talk

Introduction

- Stochastic optimal control: definition
- Examples: robotics, sampling unnormalized densities, importance sampling for diffusions
- Existing approaches: the adjoint method

Stochastic Optimal Control Matching

- · Comparing stochastic optimal control with normalizing flows
- Our algorithm: SOCM ²
- Main features of our algorithm
- Experiments

Key ideas

- Derivation of the SOCM loss
- The path-wise reparameterization trick
- · Conclusions and future directions

²Domingo-Enrich, C., Han, J., Amos, B., Bruna, J., Chen, R.T.Q. *Stochastic optimal control matching*, arXiv preprint, 2023.

Thank you!

Contact: cd2754@nyu.edu

Experiments: Gradient norm

Experiments: Control objective

References i

- [Bel57] Richard Bellman. Dynamic Programming. Princeton, NJ, USA: Princeton University Press, 1957.
- [BRU23] Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on diffusion-based generative modeling. 2023. arXiv: 2211.01364 [cs.LG].
- [Che+18] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. "Neural Ordinary Differential Equations". In: Advances in Neural Information Processing Systems. 2018.
- [Dom+23] Carles Domingo-Enrich, Jiequn Han, Joan Bruna, Brandon Amos, and Ricky T. Q. Chen. Stochastic Optimal Control Matching. To appear. 2023.
- [FB21] Grzegorz Ficht and Sven Behnke. "Bipedal Humanoid Hardware Design: a Technology Review". In: Current Robotics Reports 2 (2021), pp. 201–210. URL: https://api.semanticscholar.org/CorpusID:232147157.

References ii

- [Fre+21] C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem. Brax - A Differentiable Physics Engine for Large Scale Rigid Body Simulation. Version 0.9.3. 2021. URL: http://github.com/google/brax.
- [HJA20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. "Denoising Diffusion Probabilistic Models". In: Advances in Neural Information Processing Systems. Vol. 33. Curran Associates, Inc., 2020.
- [HJE18] Jiequn Han, Arnulf Jentzen, and Weinan E. "Solving high-dimensional partial differential equations using deep learning". In: Proceedings of the National Academy of Sciences 115.34 (2018), pp. 8505–8510.
- [NR23] Nikolas Nüsken and Lorenz Richter. Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space. 2023.
- [Onk+23] Derek Onken, Levon Nurbekyan, Xingjian Li, Samy Wu Fung, Stanley Osher, and Lars Ruthotto. "A Neural Network Approach for High-Dimensional Optimal Control Applied to Multiagent Path Finding".
 In: IEEE Transactions on Control Systems Technology 31.1 (Jan. 2023), pp. 235–251.

[Pon62] L.S. Pontryagin. The Mathematical Theory of Optimal Processes. Interscience publishers. Interscience Publishers, 1962.

- [WHJ17] E Weinan, Jiequn Han, and Arnulf Jentzen. "Deep Learning-Based Numerical Methods for High-Dimensional Parabolic Partial Differential Equations and Backward Stochastic Differential Equations". In: Communications in Mathematics and Statistics 5.4 (2017), pp. 349–380.
- [Zha+14] Wei Zhang, Han Wang, Carsten Hartmann, Marcus Weber, and Christof Schütte. "Applications of the Cross-Entropy Method to Importance Sampling and Optimal Control of Diffusions". In: SIAM Journal on Scientific Computing 36.6 (2014), A2654–A2672.