

machine learning new perspectives for science

Scientific Inference with Interpretable Machine Learning Analyzing Models to Learn About Real-World Phenomena

Timo Freiesleben Joint work with G. König, C. Molnar, & A. Tejero-Cantero

University of Tübingen, Cluster of Excellence 'Machine Learning for Science'

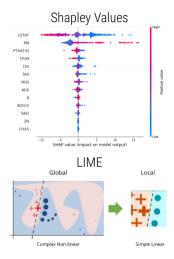
Outline

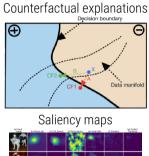
- 2 Traditional scientific inference
- 3 Theory of property descriptors

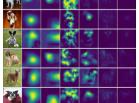
Motivation: Interpretable ML

- ► Also called XAI
- ► Ingredients:
 - Data D
 - inputs \boldsymbol{X} and prediction $\hat{\boldsymbol{Y}}$
 - Trained ML model \hat{m}

Motivation: Method zoo

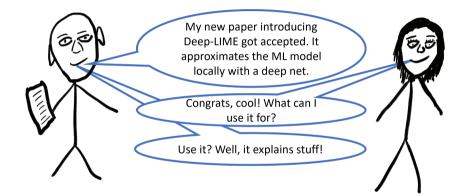






Images by: Idit Cohen, Mokuwe et al. [2020], Ribeiro et al. [2016], Verma et al. [2020]

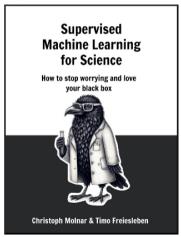
Motivation: What real problems are solved?



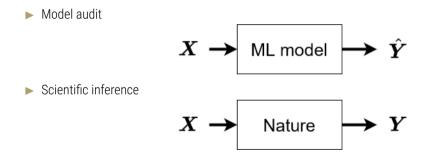
Dear XAI community, we need to talk! [Freiesleben and König, 2023]

Motivation: Can we use (interpretable) ML for science?

https://ml-science-book.com/



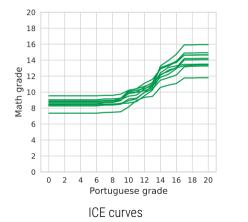
Motivation: Model audit vs scientific inference

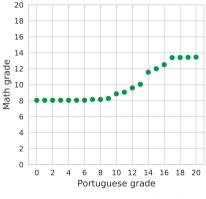


Motivation: Laura example

- How relate language and math skills?
- ▶ Data [Cortez and Silva, 2008]:
 - students grades,
 - parent's jobs/education,
 - age, tutoring, absences, etc.

Motivation: Partial dependence plot





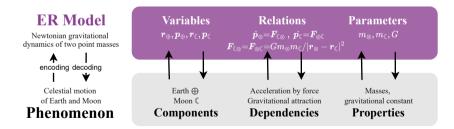
Partial Dependence Plot (PDP)

Where Are We?

- 2 Traditional scientific inference
- Theory of property descriptors

Definition: Elementwise Representationality

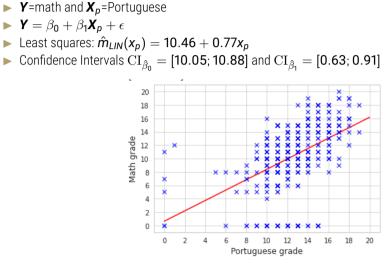
A model is *elementwise representational* (ER) if all model elements represent an element in the phenomenon.



Traditional scientific inference: Why ER?

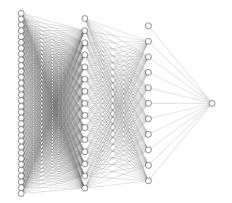
- ▶ ER is cognitively appealing
- ▶ ER eases model construction
- ▶ ER allows inference from model to world

Traditional scientific inference: Example



Traditional scientific inference: ML models not ER

- ▶ ML models are less assumption laden
- ▶ Most model elements (weights, activation functions, etc) have no meaning



Traditional scientific inference: Inference with ML

▶ Option 1: [Bokulich, 2011]

- Scientific inference without ER is impossible
- ▶ Option 2: [Olah et al., 2020]
 - ML models are ER too

- ▶ Option 3: [Cichy and Kaiser, 2019]
 - IML for scientific inference

Traditional scientific inference: IML for inference

Problems

- Current IML focuses on model audit
- Not every audit allows for inference
- Audit and inference are complementary goals

$$\begin{array}{ccc} X \longrightarrow & \mathsf{ML model} & \longrightarrow & \hat{Y} \\ \\ X \longrightarrow & \mathsf{Nature} & \longrightarrow & Y \end{array}$$

Where Are We?

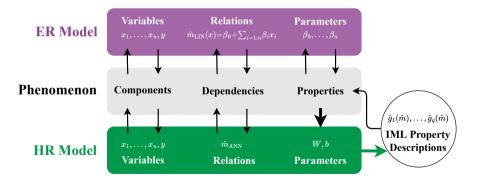
Traditional scientific inference

3 Theory of property descriptors

Theory of property descriptors: Hollistic representation

Definition: Holistic representationality

A model is *holistically representational* (HR) if the whole model represents aspects of the phenomenon.

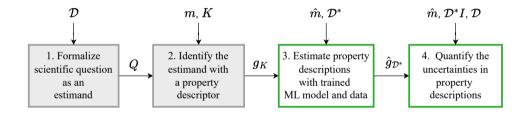


Theory of property descriptors: What ML models represent?

Problem	Loss	$L(Y, \hat{m}(X))$	Optimal predictor ^a m
Regression (Y continuous)	mean squared error	$(Y - \hat{m}(X))^2$	$\mathbb{E}_{Y \boldsymbol{X}}[Y \boldsymbol{X}]$
	mean absolute error	$\left Y - \hat{m}(X)\right $	median(Y X)
Classification	0-1 loss	0 if $\hat{m}(\mathbf{X}) = Y$, else 1	$\operatorname{argmax}_{y\in\mathcal{Y}} \mathbb{P}(Y=y \mid X)$
(Y discrete)	cross entropy	$\sum_{r\in\mathcal{Y}} \mathbb{P}_{Y}(r) \log \mathbb{P}_{\hat{m}(\mathbf{X})}(r)$	$\mathbb{P}(Y \mid X)$



Theory of property descriptors: Four steps



Theory of property descriptors: 1. Formalize scientific question

- Scientists start by asking and formalizing questions.
- Question: How are language skills associated with math skills?
- Formalized Question: $Q = \mathbb{E}_{\mathbf{Y} | \mathbf{X}_p} [\mathbf{Y} | \mathbf{X}_p]$

Definition: Question Identifiability

We say that a question is *identifiable* relative to probabilistic knowledge K if we can compute Q from m and K.

► Laura's question can be identified with $K = \mathbb{P}(X_{-p} \mid X_p)$

$$\begin{split} \mathbf{Q} &:= \mathbb{E}_{\mathbf{Y}|\mathbf{X}_{\rho}}[\mathbf{Y} \mid \mathbf{X}_{\rho}] \\ &= \mathbb{E}_{\mathbf{X}_{-\rho}|\mathbf{X}_{\rho}}[\mathbb{E}_{\mathbf{Y}|\mathbf{X}}[\mathbf{Y} \mid \mathbf{X}] \mid \mathbf{X}_{\rho}] \qquad \text{(by the tower rule)} \\ &= \mathbb{E}_{\mathbf{X}_{-\rho}|\mathbf{X}_{\rho}}[m(\mathbf{X}) \mid \mathbf{X}_{\rho}]. \end{split}$$

Definition: Property Descriptor

A property descriptor is a continuous function g_K that identifies Q given K

$$g_{\mathcal{K}}: \mathcal{M} \to \mathcal{Q}$$
 with $g_{\mathcal{K}}(m) = Q$.

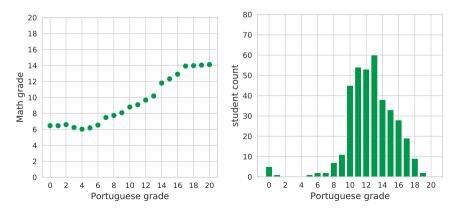
► In our example, this is the conditonal Partial Dependence Plot (cPDP): $g_{\kappa}(\hat{m}) := \mathbb{E}_{\mathbf{X}_{-\rho}|\mathbf{X}_{\rho}}[\hat{m}(\mathbf{X}) \mid \mathbf{X}_{\rho}]$

Theory of property descriptors: 3. Estimate property

In real life, we have limited access to **X**, **Y**. We have finite data.

Definition: Property Description Estimator

The property description estimator $\hat{g}_{\mathcal{D}^*}$ is an unbiased estimator of $g_{\mathcal{K}}$.

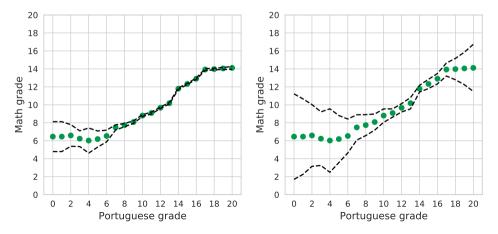


Theory of property descriptors: 4. Uncertainty quantification

We make two errors on the way:

1 we do not have the optimal model (model error), and

2 we only have finite data (estimation error).



Theory of property descriptors: Practical descriptors

Global / local question		Estimand	IML method
Conditional contribu- tion	How much worse can Y be predicted from X if we did not know X_p ?	$EPE_{\boldsymbol{X},\boldsymbol{Y}} \boldsymbol{m}_{\boldsymbol{X}}(\boldsymbol{X}) - EPE_{\boldsymbol{X}_{-p},\boldsymbol{Y}} \boldsymbol{m}_{\boldsymbol{X}_{-p}}(\boldsymbol{X}_{-p})$	cFI Strobl et al. (2008)
	How much worse can Y be predicted from $X = x$ if we did not know X_p ?	$L(y, m_{\boldsymbol{X}}(\boldsymbol{x})) - L(y, m_{\boldsymbol{X}_{-p}}(\boldsymbol{x}_{-p}))$	ICI Casalicchio et al. (2019)
Fair contribu- tion	What is the fair share of feature X_p in the prediction of Y ?	$\frac{1}{n}\sum_{S \subseteq N \setminus \{p\}} {\binom{n-1}{ S }}^{-1} \left(\text{EPE}_{\boldsymbol{X}_{S \cup \{p\}}, Y} \boldsymbol{m}_{\boldsymbol{X}_{S \cup \{p\}}}(\boldsymbol{X}_{S \cup \{p\}}) - \text{EPE}_{\boldsymbol{X}_{S}, Y} \boldsymbol{m}_{\boldsymbol{X}_{S}}(\boldsymbol{X}_{S}) \right)$	SAGE Covert et al. (2020)
	What is the fair share of feature X_p in the prediction of Y if $X = x$?	$\frac{\frac{1}{n}\sum_{S \subseteq \mathcal{N} \setminus \{p\}} {\binom{n-1}{ S }}^{-1} (m_{\boldsymbol{X}_{S \cup \{p\}}}(\boldsymbol{x}_{S}, \boldsymbol{x}_{p}) - m_{\boldsymbol{X}_{S}}(\boldsymbol{x}_{S}))$	Conditional Shapley values Aas et al. (2021)

▶ Which student information should educators track? ⇒ ICI, cFI, conditional SHAP & SAGE

Theory of property descriptors: Practical descriptors

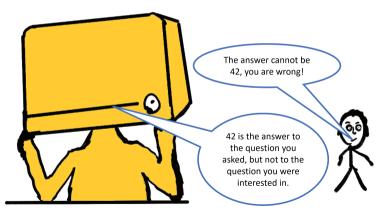
Global / local question		Estimand	IML method
Effect	What is the best estimate of <i>Y</i> if we only know X_p ?	$m_{X_p}(X_p)$	cPDP Apley and Zhu (2020)
	How does the best estimate of <i>Y</i> change relative to X_p , knowing that $X_{-p} = x_{-p}$?	$m_{\boldsymbol{X}}(X_p, \boldsymbol{x}_{-p})$	ICE curve Goldstein et al. (2015)
Relevant value	Under which realistic conditions X can we observe relevant value y _{rel} ?	$ \underset{\substack{x \in \text{supp } \mathbf{X}}}{\arg\min d_{\mathbf{y}}(m_{\mathbf{X}}(x), y_{\text{rel}})} $	PRIM ^a Friedman and Fisher (1999)
	Under which realistic conditions similar to x can we observe relevant value y_{rel} ?	$ \underset{x' \in \text{supp } X}{\arg\min} d_{\mathcal{Y}}(m_{\mathcal{X}}(x'), y_{\text{rel}}) + \lambda d_{\mathcal{X}}(x, x') $	Counterfactu- als ^b Dandl et al. (2020)

▶ How influences parents' education students math skills? \Rightarrow ICE & cPDP

 \blacktriangleright What characterizes (more/less) successful students? \Rightarrow counterfactuals & PRIM

Theory of property descriptors: Disagreement

- > Methods can only meaningfully disagree if they have different estimands.
- ▶ The disagreement problem stems from a lack of clarity about the question asked.



Where Are We?

Traditional scientific inference

Theory of property descriptors

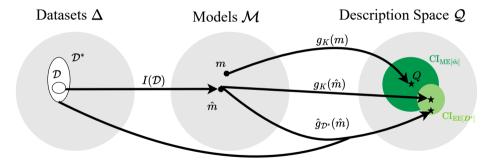
Discussion: Causality

- ▶ Most scientific questions are causal:
 - Would tutoring in Portuguese improve students math skills? (Interventional)
 - Did the student fail in math because of her Portuguese skills? (Counterfactual)
- > Property descriptors describe associational quantities.
- Causal questions add another layer to the pipeline and require causal knowledge.

- > Direct estimation often better! (e.g. targeted learning [Van der Laan and Rose, 2011])
- Conditional sampling is needed but hard!
- ▶ Formalizing questions on images and sound?

- Problem: Scientific inference via model elements is not available. Current IML mixes different desiderata.
- ▶ Our Solution: Smart interrogation with property descriptors allows to learn about the process.

Questions



- A. Bokulich. How scientific models can explain. *Synthese*, 180(1):33–45, 2011.
- R. M. Cichy and D. Kaiser. Deep neural networks as scientific models. *Trends in cognitive sciences*, 23 (4):305–317, 2019.
- P. Cortez and A. M. G. Silva. Using data mining to predict secondary school student performance. 2008.
- T. Freiesleben and G. König. Dear xai community, we need to talk! fundamental misconceptions in current xai research. In *World Conference on Explainable Artificial Intelligence*, pages 48–65. Springer, 2023.
- M. Mokuwe, M. Burke, and A. S. Bosman. Black-box saliency map generation using bayesian optimisation. In *2020 International Joint Conference on Neural Networks (IJCNN)*, pages 1–8. IEEE, 2020.
- C. Olah, N. Cammarata, L. Schubert, G. Goh, M. Petrov, and S. Carter. Zoom in: An introduction to circuits. *Distill*, 5(3):e00024–001, 2020.
- M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust you?: Explaining the predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 1135–1144. ACM, 2016. doi: 10.1145/2939672.2939778.
- M. J. Van der Laan and S. Rose. Targeted learning. Springer, 2011.

S. Verma, J. Dickerson, and K. Hines. Counterfactual explanations for machine learning: A review. *arXiv* preprint arXiv:2010.10596, 2, 2020.