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Motivation: Interpretable ML

▶ Also called XAI
▶ Ingredients:

Data D
inputs X and prediction Ŷ
Trained ML model m̂

Black Box 
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Motivation: Method zoo

Shapley Values

LIME

Counterfactual explanations

Saliency maps

Images by: Idit Cohen, Mokuwe et al. [2020], Ribeiro et al. [2016], Verma et al. [2020]
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Motivation: What real problems are solved?

Dear XAI community, we need to talk! [Freiesleben and König, 2023]
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Motivation: Can we use (interpretable) ML for science?

https://ml-science-book.com/
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https://ml-science-book.com/


Motivation: Model audit vs scientific inference

▶ Model audit

▶ Scientific inference
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Motivation: Laura example

▶ How relate language and math skills?
▶ Data [Cortez and Silva, 2008]:

students grades,
parent’s jobs/education,
age, tutoring, absences, etc.
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Motivation: Partial dependence plot

▶ Timo= (Port grade: 0; tutoring: no; absences: 5; . . . )
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Partial Dependence Plot (PDP)

9 / 34



Where Are We?

1 Motivation

2 Traditional scientific inference

3 Theory of property descriptors

4 Discussion

10 / 34



Traditional scientific inference: Elementwise representation

Definition: Elementwise Representationality

A model is elementwise representational (ER) if all model elements represent an element in the
phenomenon.

Phenomenon 

Parameters
☾

Properties

☾ ☾

Components 

Variables Relations
☾ ☾ ☾

ER Model

Dependencies

Earth ⊕  
Moon ☾

Acceleration by force
Gravitational attraction 

Newtonian gravitational  
dynamics of two point masses 

Celestial motion  
of Earth and Moon 

Masses,  
gravitational constant

☾ ☾ ☾ ☾

encoding decoding
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Traditional scientific inference: Why ER?

▶ ER is cognitively appealing
▶ ER eases model construction
▶ ER allows inference from model to world
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Traditional scientific inference: Example

▶ Y=math and Xp=Portuguese
▶ Y = β0 + β1Xp + ϵ

▶ Least squares: m̂LIN(xp) = 10.46+ 0.77xp
▶ Confidence Intervals CIβ̂0

= [10.05; 10.88] and CIβ̂1
= [0.63;0.91]
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Traditional scientific inference: ML models not ER

▶ ML models are less assumption laden
▶ Most model elements (weights, activation functions, etc) have no meaning
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Traditional scientific inference: Inference with ML

▶ Option 1: [Bokulich, 2011]
Scientific inference without ER is impossible

▶ Option 2: [Olah et al., 2020]
ML models are ER too

▶ Option 3: [Cichy and Kaiser, 2019]
IML for scientific inference
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Traditional scientific inference: IML for inference

▶ Problems
Current IML focuses on model audit
Not every audit allows for inference
Audit and inference are complementary goals
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Theory of property descriptors: Hollistic representation

Definition: Holistic representationality

A model is holistically representational (HR) if the whole model represents aspects of the phenomenon.

Phenomenon

HR Model

Parameters

Variables

Variables
ER Model

Parameters

 
 

PropertiesComponents 

Relations

Relations

Dependencies

IML Property
Descriptions 
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Theory of property descriptors: What ML models represent?
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Theory of property descriptors: Four steps

1. Formalize
scientific question

as an
estimand

2. Identify the
estimand with

a property 
descriptor

3. Estimate property
descriptions 
with trained 

ML model and data

4.  Quantify the
uncertainties in

property 
descriptions

, , , ,  
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Theory of property descriptors: 1. Formalize scientific question

▶ Scientists start by asking and formalizing questions.
▶ Question: How are language skills associated with math skills?
▶ Formalized Question: Q = EY|Xp [Y | Xp]
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Theory of property descriptors: 2. Identify estimand

Definition: Question Identifiability

We say that a question is identifiable relative to probabilistic knowledge K if we can compute Q from m
and K.

▶ Laura’s question can be identified with K = P(X−p | Xp)

Q := EY|Xp [Y | Xp]

= EX−p|Xp [EY|X[Y | X] | Xp] (by the tower rule)
= EX−p|Xp [m(X) | Xp].
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Theory of property descriptors: 2. Identify estimand

Definition: Property Descriptor

A property descriptor is a continuous function gK that identifies Q given K

gK : M → Q with gK(m) = Q.

▶ In our example, this is the conditonal Partial Dependence Plot (cPDP):
gK(m̂) := EX−p|Xp [m̂(X) | Xp]
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Theory of property descriptors: 3. Estimate property

In real life, we have limited access to X,Y. We have finite data.

Definition: Property Description Estimator

The property description estimator ĝD∗ is an unbiased estimator of gK .
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Theory of property descriptors: 4. Uncertainty quantification

We make two errors on the way:
1 we do not have the optimal model (model error), and
2 we only have finite data (estimation error).
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Theory of property descriptors: Practical descriptors

▶ Which student information should educators track? ⇒ ICI, cFI, conditional SHAP & SAGE
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Theory of property descriptors: Practical descriptors

▶ How influences parents’ education students math skills? ⇒ ICE & cPDP
▶ What characterizes (more/less) successful students? ⇒ counterfactuals & PRIM
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Theory of property descriptors: Disagreement

▶ Methods can only meaningfully disagree if they have different estimands.
▶ The disagreement problem stems from a lack of clarity about the question asked.

28 / 34



Where Are We?

1 Motivation

2 Traditional scientific inference

3 Theory of property descriptors

4 Discussion

29 / 34



Discussion: Causality

▶ Most scientific questions are causal:
Would tutoring in Portuguese improve students math skills? (Interventional)
Did the student fail in math because of her Portuguese skills? (Counterfactual)

▶ Property descriptors describe associational quantities.
▶ Causal questions add another layer to the pipeline and require causal knowledge.
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Discussion: Limitations

▶ Direct estimation often better! (e.g. targeted learning [Van der Laan and Rose, 2011])
▶ Conditional sampling is needed but hard!
▶ Formalizing questions on images and sound?
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Conclusion

▶ Problem: Scientific inference via model elements is not available. Current IML mixes different
desiderata.

▶ Our Solution: Smart interrogation with property descriptors allows to learn about the process.
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Questions
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Graph for Formal Depiction

Description Space Models Datasets 
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