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Motivation
• Function: mapping between input variable to output variable

𝑓: 𝑥 → 𝑦

Ex) if 𝑓 𝑥 = 𝑥2, 𝑓 2 = 4 and 𝑓 3 = 9.

• Regression problem: approximate function 𝑓

• Operator: mapping between input function to output function

𝒢: 𝑎 𝑥 → 𝑢(𝑦)

Ex) if 𝒢 = 𝛻𝑥,                       𝑎1(𝑥) = 𝑥2 → 𝛻𝑥𝑎1 = 2𝑥

𝑎2(𝑥) = sin 𝑥 → 𝛻𝑥𝑎2 = cos 𝑥

• Operator learning problem: approximate operator 𝒢

Output function, 𝒖Input function, 𝒂
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𝑥 𝑦
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Motivation

1. L. Serrano, et. al, “Operator Learning with Neural Fields: Tackling PDEs on General Geometries”, Neurips, 2023.



• Architecture for solving partial differential equations (PDEs) faces 

two main challenges:

• Flexibility in handling arbitrary discretization formats, and

• Scalability to large discretization. 

• Most existing architectures are limited by

• Their desired discretization formats

• Fourier neural operators, DeepONets

• Infeasible to scale large inputs and outputs

• Existing Transformer-based operators

1. https://www.comsol.com/multiphysics/mesh-refinement
2. S. Chen, et. al., ”Foundation Models for Weather and Climate Data Understanding: A Comprehensive Survey”, arXiv:2312.03014, 2023
3. Z. Li, et. al., “Fourier Neural Operator for Parametric Partial Differential Equations”, ICLR, 2021. 
4. L. Lu, et. al., “Learning Nonlinear Operators via DeepONet Based on the Universal Approximation Theorem of Operators”, Nature, 2021.
5. Z. Li, et. al., “Transformer for Partial Differential Equations’ Operator Learning”, TMLR, 2023. 

Motivation
• Irregular grids
• Varying discretization
• Unordered/unstructured

Flexible in any discretization

Scalable to large discretization
or long-term forecasting
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• De Finetti’s theorem
• Let 𝑋 = {𝑥1, 𝑥2, … } be an exchangeable sequence. Then, for 𝑛 ∈ 𝑁+, there exists a latent variable 𝑧 induced 

by the exchangeability, 

𝑝 𝑥1, … , 𝑥𝑛 = නෑ

𝑖=1

𝑛

𝑝 𝑥𝑖 𝑧 ⋅ 𝑝 𝑧 𝑑𝑧 ,

• where 𝑧 is a desirable representation which is expected to include a sufficient statistic of the input 𝑋 for 
predicting the target variable 𝑦. 

𝑝 𝑦 𝑋 = න𝑝 𝑦 𝑧 ⋅ 𝑝 𝑧|𝑋 𝑑𝑧

1. M. Zaheer, et. al, “Deep Sets”, Neurips, 2018.
2. Y. Zhang, et. al, “An Analysis of Attention via the Lens of Exchangeability and Latent Variable Models”, arXiv:2212.14852, 2023.
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Preliminaries
• Partial Differential Equation (PDE)

ℒ𝑎𝑢 = 𝑓, 𝑥 ∈ Ω
ℬ𝑢 = 0, 𝑥 ∈ 𝜕Ω

• ℒ: differential operator, ℬ: boundary conditions, 𝑓: source function

• 𝑎: system parameter (input)

• 𝑢: solution (output)

• Operator learning on PDE

• Goal: approximate 𝒢 = ℒ𝑎
−1𝑓: 𝒜 → 𝒰 with 𝒢𝜃 from input-output pairs 𝑎𝑖 , 𝑢𝑖 𝑖=1

𝑁

• Objective: learning the model 𝒢𝜃:𝒜 → 𝒰 with 𝑎~𝜇 is i.i.d. on 𝒜

𝐸𝑎~𝜇 ℒ 𝒢𝜃 𝑎 , 𝑢 ≈
1

𝑁


𝑖=1

𝑁

𝑢𝑖 − 𝒢𝜃 𝑎𝑖
2

Output function, 𝒖Input function, 𝒂

𝓖𝜽

Solution function: 𝒖 = 𝓖𝜽(𝒂)

𝑥 𝑦



• Kernel integral operation
• Operator learning models consists of series of kernel integral operators 𝓚:𝒗𝒍 𝒙 → 𝒗𝒍+𝟏(𝒚),

𝑣𝑙+1 𝑦 = 𝒦𝑙 𝑣𝑙 𝑦 = න
Ω𝑥

𝜅𝜙 𝑦, 𝑥 𝑣𝑙 𝑥 𝑑𝑥 , 𝑥, 𝑦 ∈ Ω𝑥 × Ω𝑦

𝜅𝜙 𝑦1, 𝑥1 ⋯ 𝜅𝜙 𝑦1, 𝑥𝑛𝑥
⋮ ⋱ ⋮

𝜅𝜙 𝑦𝑛𝑦 , 𝑥1 ⋯ 𝜅𝜙 𝑦𝑛𝑦 , 𝑥𝑛𝑥

𝑣𝑙 𝑥1
⋮

𝑣𝑙 𝑥𝑛𝑥

=

𝑣𝑙+1 𝑦1
⋮

𝑣𝑙+1 𝑦𝑛𝑦

• 𝒦 : kernel operator, 𝜅𝜙 𝑦, 𝑥 : kernel function

• Ω𝑥 = {𝑥1, … , 𝑥𝑛𝑥} : (discretized) input domain, Ω𝑦 = 𝑦1, … , 𝑦𝑛𝑦 : (discretized) output domain

• 𝜅𝜙(𝑦, 𝑥) can be interpreted as interactions (correlations) between the infinitesimal segments at location 𝒙 and 𝒚.

𝐴 𝑥 𝑏=

Output function, 𝒗𝒍+𝟏(𝒚)Input function, 𝒗𝒍(𝒙)
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• Kernel integral operation
• Operator learning models consists of series of kernel integral operators 𝓚:𝒗𝒍 𝒙 → 𝒗𝒍+𝟏(𝒚),

𝑣𝑙+1 𝑦 = 𝒦𝑙 𝑣𝑙 𝑦 = න
Ω𝑥

𝜅𝜙 𝑦, 𝑥 𝑣𝑙 𝑥 𝑑𝑥 , 𝑥, 𝑦 ∈ Ω𝑥 × Ω𝑦

• Attention mechanism
• Let input vectors 𝑋 ∈ 𝑅𝑛𝑥×𝑑, query vectors 𝑌 ∈ 𝑅𝑛𝑦×𝑑, then the attention can be

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑌, 𝑋, 𝑋 = 𝜎 𝑄𝐾𝑇 𝑉 ≈ න
Ω𝑥

𝑞 𝑌 ⋅ 𝑘 𝑥 𝑣 𝑥 𝑑𝑥 ,

• 𝑄 = 𝑌𝑊𝑞 ∈ 𝑅𝑛𝑦×𝑑 , 𝐾 = 𝑋𝑊𝑘 ∈ 𝑅𝑛𝑥×𝑑 , and 𝑉 = 𝑋𝑊𝑣 ∈ 𝑅𝑛𝑥×𝑑 are query, key, and value matrices respectively. 

• Kernel integral operation can be approximated by the attention mechanism.

• Input vector 𝑋 is projected to query embedding space 𝑌, which can change the number of discretization from 𝒏𝒙 → 𝒏𝒚

• Complexity: when the size of input and output discretization are 𝑛𝑥 ≈ 𝑛𝑦 ≈ 𝑛.
• Self-attention: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑋, 𝑋, 𝑋 ∼ 𝒪 𝑛2𝑑 ,    Cross-attention: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑌, 𝑋, 𝑋 ∼ 𝒪(𝑛𝑛𝑧𝑑)

Input 
function
- size: 𝒏𝒙

𝐴(𝑌, 𝑋, 𝑋)
𝑸

𝒀

𝑛𝑦

𝑲𝑻 𝑽
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• Inducing point operator transformer (IPOT)
• IPOT can capture global interactions and provide flexibility for handling arbitrary input and output formats with feasi

ble computational complexity. 

• IPOT employs a smaller number of 𝒏𝒛 learnable query vectors into the encoder, allowing most of the attention mechan
isms to be computed in the latent space instead of the larger observational space. 

Approach



• Encoder
• We use cross-attention block to encode inputs 𝑎 ∈ 𝑅𝑛𝑥×𝑑 to a smaller fixed number 𝑛𝑧 of learnable queries 𝒁𝒒 ∈ 𝑹

𝒏𝒛×𝒅 (𝑛𝑧 ≪ 𝑛𝑥)
,

𝑍0 = 𝒢𝑒𝑛𝑐 𝑎 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑍𝑞, 𝑎, 𝑎 ∈ 𝑅𝑛𝑧×𝑑 ,

• Projecting input function to a smaller size of 𝒏𝒛 elements called “inducing points” which behave like the summary of 𝑋.

• Computational cost ∼ 𝒪(𝑛𝑥𝑛𝑧𝑑) : linear complexity with the size of input discretization 𝑛𝑥.

~ 𝒪(𝑛𝑥𝑛𝑧𝑑)

Approach



• Processor
• We use self-attention blocks to process latent vectors 𝑍𝑙 ∈ 𝑅

𝑛𝑧×𝑑 as the input of the query, key, and value components,

𝑍𝑙+1 = 𝒢𝑙 𝑍𝑙 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑍𝑙 , 𝑍𝑙 , 𝑍𝑙 ∈ 𝑅𝑛𝑧×𝑑 ,

• which are decoupled from the discretization of the input and output functions: applicable to any discretization formats. 

• Computational cost ∼ 𝒪(𝐿𝑛𝑧
2𝑑) : the size of 𝒏𝒛 makes it feasible for high-fidelity modeling or long-term forecasting. 

~ 𝒪(𝑛𝑥𝑛𝑧𝑑)

~ 𝒪(𝐿𝑛𝑧
2𝑑)

Approach



• Decoder
• We use cross-attention block to decode the latent vectors from the processor 𝑍𝐿 ∈ 𝑅

𝑛𝑧×𝑑 at output queries 𝒀 ∈ 𝑹𝒏𝒚×𝒅,

𝑢 = 𝒢𝑑𝑒𝑐 𝑌, 𝑍𝐿 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑌, 𝑍𝐿, 𝑍𝐿 ∈ 𝑅𝑛𝑦×𝑑 ,

• The entire model is applicable to arbitrary input discretization and can be queried out at arbitrary output queries.

• Computational cost ∼ 𝒪(𝑛𝑧𝑛𝑦𝑑) : linear complexity with the size of output discretization 𝑛𝑦.

~ 𝒪(𝑛𝑥𝑛𝑧𝑑)

~ 𝒪(𝐿𝑛𝑧
2𝑑)

~ 𝒪(𝑛𝑧𝑛𝑦𝑑)

Approach



• Time-stepping through latent space
• We model the time-dependent PDEs as an autoregressive process. 

• The initial states are compressed into the latent space, where most computations are time-stepping through the 
latent space. 

• Finally, the latent states are decoded at each time step with arbitrary query points. 

IPOT blocks IPOT blocks
Approach
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• Datasets. conducted on several scientific data benchmarks
• Regular grids: Burgers, Darcy flow, Navier-Stokes

• Irregular grids: Airfoil, Elasticity, Plasticity, spherical shallow water

• Real-world data: ERA5 reanalysis 

• Training. Given the input-output pairs (full grids of input and output in case of regular grids)

𝐸𝑎~𝜇 ℒ 𝒢𝜃 𝑎 , 𝑢 ≈
1

𝑁


𝑖=1

𝑁

𝑢𝑖 − 𝒢𝜃 𝑎𝑖
2

• Evaluation. Empirical test errors where discretization of 𝑎𝑖
𝑡𝑒𝑠𝑡 (input) and 𝑦 (output) can be changing. 

1

𝑁′


𝑖=1

𝑁′



𝑦∈𝑌

𝑢𝑖 𝑦 − 𝒢𝜃 𝑎𝑖
𝑡𝑒𝑠𝑡 𝑦

2

• The test error can be bounded by the sum of the approximation error and discretization error



𝑦∈𝑌

‖𝑢𝑖 𝑦 − 𝒢𝜃 𝑎𝑖
𝑡𝑒𝑠𝑡 𝑦 ‖ ≤ 

𝑦∈𝑌

𝑢𝑖 𝑦 − 𝒢𝜃 𝑎𝑖 𝑦 + ‖𝒢𝜃 𝑎𝑖 𝑦 − 𝒢𝜃 𝑎𝑖
𝑡𝑒𝑠𝑡 𝑦 ‖

1. Z. Li, et. al, “Fourier Neural Operator for Parametric Partial Differential Equations”, ICLR, 2021.
2. Z. Li, et. al, ”Fourier Neural Operator with Learned Deformations for PDEs on General Geometries”, arXiv:2207.05209, 2022.
3. Y. Yin, et. al, “Continuous PDE Dynamics Forecasting with Implicit Neural Representations”, ICLR, 2023.
4. 5 https://www.ecmwf.int/en/forecasts/datasets/browsereanalysis-datasets
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• Flexible to arbitrary discretization formats

Experiments

Burgers’ equations Darcy flows
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• Flexible to arbitrary discretization formats

• Predictions of IPOT on the problems of 
Darcy flow (left), airfoil (top right), elast
icity (middle right), and plasticity (botto
m right).

• Long-term predictions of IPOT on sphe
rical manifolds for the shallow-water eq
uation (left), and on real-world weather 
forecasting when the inputs are spatiall
y fully given (top right), and partially gi
ven (bottom right).

Experiments



• Scalable to large discretization

• Complexity comparisons on different re
solutions. We compare the different m
odels in terms of inference time (left) a
nd CUDA memory usage (right) with di
fferent sizes of input/output.

• Performance of IPOT with varying the n
umber of inducing points. IPOT w.o ip 
denotes that IPOT without inducing poi
nts which emulates the standard Transf
ormer.

Experiments



• IPOT demonstrates great flexibility and scalability compared to state-of-the-art methods.

Experiments



Summary



• Since the physical systems are usually continuous, it is required to build discretization-invariant mode
ls that impose few assumptions on the data structure. 

• Our proposed architecture is flexible in handling arbitrary discretization formats and scalable to large 
discretization. 

• It is important to balance accuracy and complexity effectively according to the problems.

• [From experience on operator learning] When moving beyond the benchmarks to the foundation mo
del, it is crucial to building datasets that can cover the potential test set carefully and to investigate 
basic knowledge (bandwidth, scales, eigenbasis, geometries, …) in advance.

Summary



Thank you


