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Introduction
Modeling

Dynamic models are important to
analyze transient behavior under operating
conditions

control design

parameter optimization

long-time horizon prediction
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Objective

Problem set-up

Construct a mathematical model

ẋ(t) = f(x(t)),

describing dynamics of the process.

Neural network-based approaches: recurrent neural networks and long short time
memory networks

The more information about the process is known, the more we can make learning
efficient.

Key sources of information

Physical laws

Domain knowledge

Collected data
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Objective

Problem set-up

Construct a mathematical model

ẋ(t) = f(x(t)),

describing dynamics of the process.

Neural network-based approaches: recurrent neural networks and long short time
memory networks

The more information about the process is known, the more we can make learning
efficient.

For efficient engineering study, e.g., parameter optimization, control, we want the
model to be as simple as possible.

Key sources of information

Physical laws

Domain knowledge

Collected data
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Koopman Operator and DMD

The simplest model, one can think of, is Linear Models
 Many tools for optimal/feedback control, optimization, and prediction

Given data x(ti) and its derivative ẋ(ti), a linear model can be determined by
solving

min
A
‖Ẋ−AX‖,

where Ẋ = [ẋ(t1), . . . , ẋ(tn)] and X = [x(t1), . . . ,x(tn)]

Often referred to as Dynamic Mode Decomposition, or Operator Inference

Once linear models are learned and verified, we can deploy for engineering studies

However, challenges are:
Cannot measure the full state x  partial measurements
The world is nonlinear, thus learning a linear model may not be sufficient to
characterize complex dynamic behavior
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‖Ẋ−AX‖,

where Ẋ = [ẋ(t1), . . . , ẋ(tn)] and X = [x(t1), . . . ,x(tn)]

Often referred to as Dynamic Mode Decomposition, or Operator Inference

Once linear models are learned and verified, we can deploy for engineering studies

However, challenges are:
Cannot measure the full state x  partial measurements
The world is nonlinear, thus learning a linear model may not be sufficient to
characterize complex dynamic behavior

Pawan Goyal, aAI Generalized Stability Guaranteed Quadratic Embeddings for Nonlinear Dynamics 4/22



Koopman Operator and DMD

The simplest model, one can think of, is Linear Models
 Many tools for optimal/feedback control, optimization, and prediction
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Koopman Operator and DMD

Koopman Operator in Nutshell [Koopman 1931]

A nonlinear dynamical system ẋ(t) = f(x(t)) can be written as a linear system in a
infinite dimensional Hilbert space.

Nonlinear Evolution of
Dynamics

Linear Evolution of a
lifted model

Extended DMD [Williams et al. 2015]

An aim is to approximate infinite dimensional Koopman linear operator via a finite
dimensional one.

For this, often hand-design observables are needed, which are
challenging, and gives an approximation.
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Koopman Operator and DMD

Example 1 [Lusch et al. ’18]

Consider nonlinear system. [
ẋ1(t)
ẋ2(t)

]
=

[
−x1

x2 − x2
1

]
.

Introduce a variable x3 := x2
1. This gives ẋ3 = 2 · ẋ1x1 = −2 · x2

1 = −2 · x3.

Lifted dynamics is ẋ1(t)
ẋ2(t)
ẋ3(t)

 =

 −x1

x2 − x3

−2 · x3

 .
Example 2

Consider a simple pendulum model:[
ẋ1

ẋ2

]
=

[
− sin(x2)

x1

]
.

For this example, we do not have an exact linear representation due to continuum
spectrum.
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ẋ1

ẋ2
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Our Ideal Goal

Seek to rewrite a nonlinear system to a common structure and in finite dimension
– In Koopman theory, the structure is linear systems and it is infinite dimensional

Lifting-Principle

McCormick proposed a convex relaxation to solve nonlinear non-convex
optimization. [McCormick 1976]

Key ingredient is lifting; the optimization problem in a higher-dimensional using
auxiliary variables (can think of observables in Koopman theory).

Similar ideas have been developed for learning dynamical systems.
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Quadratic Lifting-Principle for Dynamical Systems

Lifted Nonlinear Dynamical Models to Quadratic Systems using Lifting Principle

Consider a nonlinear system of the generic form:

ẋ(t) = f(x),

where x ∈ Rn, and the function f(·) is assumed to be smooth enough.

Then, there exists a lifting mapping L : Rn → Rm, and its inverse mapping
L] : Rm → Rn, resulting in

ẏ(t) = Ay + H (y(t)⊗ y(t)) + B

where y(t) = L(x(t)), and L] (y(t)) = x(t).

Such a lifting concept was developed, e.g., in [Savageau/Voit 1987] for control
purposes.

For model reduction for nonlinear systems [Gu 2009/2011, Benner/Breiten 2015,

Kramer/Willcox 2022].

Lifting in data-driven setting [Qian et al. 2019].
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ẏ(t) = Ay + H (y(t)⊗ y(t)) + B

where y(t) = L(x(t)), and L] (y(t)) = x(t).

Such a lifting concept was developed, e.g., in [Savageau/Voit 1987] for control
purposes.

For model reduction for nonlinear systems [Gu 2009/2011, Benner/Breiten 2015,

Kramer/Willcox 2022].

Lifting in data-driven setting [Qian et al. 2019].

Pawan Goyal, aAI Generalized Stability Guaranteed Quadratic Embeddings for Nonlinear Dynamics 8/22



Lifting-Principle for Dynamicalf Systems

An illustration

Consider a simple pendulum model:[
ẋ1
ẋ2

]
=

[
− sin(x2)

x1

]
.

Let us define lifted coordinates (observables) and an inverse transformation:

L :

[
x1
x2

]
7→


x1
x2

sin(x2)
cos(x2)

 =:


y1
y2
y3
y4

 , L] :


y1
y2
y3
y4

 7→ [
y1
y2

]
≡
[
x1
x2

]
.

Consequently, we can write the dynamics in the variables yi as a quadratic system:ẏ1ẏ2ẏ3
ẏ4

 =

 −y3y1y1y4
−y1y3

 .
Note that the inverse mapping is linear, and even continuous spectrum models can
be easily written using appropriate observables.
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ẏ4
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Lifting-Principle for Dynamical Systems

Using observables—inspired by Lifting-principle—we can write nonlinear systems as
quadratic systems which are

– finite dimensional
– given nonlinear systems, lifted observables are easy to determine

For given nonlinear dynamical models, we can determine suitable observables.

However, our goal itself is to learn dynamical models from data.
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Lifting-Principle for Dynamical Systems

Problem Statement (G./Benner 2024)

Given data {x(t1), . . . ,x(tN )} and derivative information {ẋ(t1), . . . , ẋ(tN )}, we seek
to identify

Observables z := ψ(x) such that

ż(t) = Az(t) + H (z(t)⊗ z(t)) + B =: Q(z),

x(t) = φ(z(t)).

Since we do not have any prior
information, we learn ψ(·) using a
neural network.

We learn parameters of neural networks
ψ(·) and φ(·), and the system matrices
{A,H,B} simultaneously.

Pawan Goyal, aAI Generalized Stability Guaranteed Quadratic Embeddings for Nonlinear Dynamics 11/22



Lifting-Principle for Dynamical Systems

Problem Statement (G./Benner 2024)

Given data {x(t1), . . . ,x(tN )} and derivative information {ẋ(t1), . . . , ẋ(tN )}, we seek
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to identify

Observables z := ψ(x) such that
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Lifting-Principle for Dynamical Systems

Naive Loss for Training (G./Benner 2024)

Auto-encoder type loss:

Lencdec =
1

N

N∑
i=1

‖x(ti)− Φ(Ψ(x(ti)))‖.

Derivative loss for ẋ:

ẋ = ∇zΦ(z)ż = ∇zΦ(z) (Az + H (z⊗ z) + B) .

Derivative loss for ż:

Lżẋ =
1

N

N∑
i=1

‖∇xΨ(x(ti))ẋ(ti)− (Az(ti) + H (z(ti)⊗ z(ti)) + B)‖

with z(ti) = Ψ(x(ti)).

Combining all these elements, we can have weighted total loss for training:

L = λ1Lencdec + λ2Lẋż + λ3Lżẋ,

– These are continuous dynamical systems; thus, in the formulation
none of the properties are included.

– We are interested in stability properties of dynamical systems.
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Lżẋ =
1

N

N∑
i=1
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ẋ = ∇zΦ(z)ż = ∇zΦ(z) (Az + H (z⊗ z) + B) .

Derivative loss for ż:
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Lżẋ =
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Stability Concepts
Linear systems

Stability of linear systems

A linear system ẋ = Ax is asymptotically stable if and only if all the eigenvalues of A lie
in left-half plane strictly. This implies, lim

t→∞
x(t) = 0.

Inference of linear systems

Given data Ẋ and X, a linear model can be inferred by solving

min
A

∥∥∥Ẋ−AX
∥∥∥ such that Λ (A) ⊂ C−.

Non-smooth optimization problem, which can be expensive; moreover, it is not
straightforward to incorporate in integral forms of inference1.

Stable matrix parameterization [Gillis/Sharma ’17]

Any stable matrix A ∈ Rn×n can be parameterized as follows:

A = (J−R)Q,

where J = −J>, R = R> � 0, and Q = Q> � 0.

1minA ‖x(ti+1)−
∫ ti+1
ti

Ax(t)dt‖
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A linear system ẋ = Ax is asymptotically stable if and only if all the eigenvalues of A lie
in left-half plane strictly. This implies, lim

t→∞
x(t) = 0.

Inference of linear systems
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Inference of Linear Stable Systems

Linear stable inference [G./Pontes/Benner ’22]

An inference problem for linear systems, ensuring stability

min
J,R,Q

∥∥∥Ẋ− (J−R)QX
∥∥∥ such that J = −J>

,R = R
> � 0,Q = Q

> � 0.

Alternatively, by relaxing strict positive constraints on R and Q, we can write

min
J̃,R̃,Q̃

∥∥∥Ẋ− ((J̃− J̃
>
)− R̃R̃

>
)
Q̃Q̃

>
X
∥∥∥ .

We solve these optimization problems using gradient descent.
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Toward Quadratic System Stability
Locally asymptotic stability

Recall, for inference of quadratic systems, we require to solve

min
A,H,B

∥∥∥Ẋ−AX−HX⊗ −B
∥∥∥ ,

resulting ẋ(t) = Ax(t) + H(x⊗ x) + B.

Local stability of quadratic systems

Consider a quadratic system, ẋ = Ax + H(x⊗ x). If Λ(A) ⊂ C−, then the system
is locally asymptotically stable. This implies, lim

t→∞
x(t) = 0 if x(0) ∈ B(0, r).

Moreover, V(x) = x>Qx is a Lyapunov function.

Inference of locally stable quadratic systems [Sawant et al. ’23, G./Pontes/Benner ’23]

We, thus, require to solve the following constraints:

min
A,H,B

∥∥∥Ẋ−AX−HX⊗ −B
∥∥∥ such that Λ(A) ∈ C−.

We already know how to parameterize stable matrices, i.e., A = (J−R)Q.
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Globally Asymptotically Stable Quadratic Systems

Local stability is not sufficient in many practical cases.

Hence, our interest are in globally asymptotically stability.

Energy preserving quadratic nonlinearity e.g., [Lorenz ’63, Schlegel/Noack ’15]

A quadratic non-linearity H(x⊗ x) is said to be energy preserving if
x>H(x⊗ x) = 0 for all x.

Such non-linearity naturally appears, e.g., in flow problems (Navier-Stokes
equations).

Globally asymptotically stable quadratic systems

Consider a quadratic system ẋ = Ax + H(x⊗ x) with energy-preserving
non-linearity. If the matrix A is stable, then it is globally asymptotically stable.

Moreover, the function V(x) = x>Qx is a Lyapunov function.

How to parameterize energy-preserving nonlinearity [G./Pontes/Benner ’23]

If the matrix H ∈ Rn×n is of the following form:

H =
[
H1, . . . ,Hn

]
,

where Hi = −H>i , then x>H(x⊗ x) = 0, or the non-linearity is energy preserving.
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Lifting-Principle for Dynamical Systems

Stability-Enforced Loss for Training (G./Benner 2024)

Auto-encoder type loss:

Lencdec =
1

N

N∑
i=1

‖x(ti)− Φ(Ψ(x(ti)))‖.

Derivative loss for ẋ:

ẋ = ∇zΦ(z)ż = ∇zΦ(z) (Az + H (z⊗ z) + B) ,

where A = (J−R) with J = −J>, R = R> � 0, and H =
[
H1, . . . ,Hn

]
with

Hi = −H>i .

Derivative loss for ż:

Lżẋ =
1

N

N∑
i=1

‖∇xΨ(x(ti))ẋ(ti)− (Az(ti) + H (z(ti)⊗ z(ti)) + B)‖

with z(ti) = Ψ(x(ti)).

Combining all these elements, we can have weighted total loss for training:

L = λ1Lencdec + λ2Lẋż + λ3Lżẋ,
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ẋ = ∇zΦ(z)ż = ∇zΦ(z) (Az + H (z⊗ z) + B) ,

where A = (J−R) with J = −J>, R = R> � 0, and H =
[
H1, . . . ,Hn

]
with

Hi = −H>i .

Derivative loss for ż:
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Illustrative Examples

Pendulum example

Governing equation is [
ẋ1(t)
ẋ2(t)

]
=

[
− sin(x2(t))− 0.025x1(t)

x1(t)

]
,

The data are collected for time interval [0, 25]s for 50 random initial conditions with
{x1,x2} ∈ [−3, 3].

We learn 3-dimensional quadratic model (≡ 3 observables).

We test using 100 random initial conditions for time interval [0, 75]s.
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Illustrative Examples

Dissipative Lotka-Volterra example

Governing equation is [
q̇(t)
ṗ(t)

]
=

[
−ep − 0.05 · q + 1
eq − 0.05 · p− 2

]
,

The data are collected for time interval [0, 10]s for 10 random initial conditions with
{x1,x2} ∈ [−1.5, 1.5].

We learn 3-dimensional quadratic model (≡ 3 observables).

We test using 100 random initial conditions for time interval [0, 30]s.
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ṗ(t)

]
=

[
−ep − 0.05 · q + 1
eq − 0.05 · p− 2

]
,

The data are collected for time interval [0, 10]s for 10 random initial conditions with
{x1,x2} ∈ [−1.5, 1.5].

We learn 3-dimensional quadratic model (≡ 3 observables).

We test using 100 random initial conditions for time interval [0, 30]s.

linear-embeds

quad-embeds

quad-OpInf

method

4

2

0

lo
g-

m
ed

ia
n 

er
ro

r -4.89e-01

-3.37e+00

-3.83e-01

Figure: Dissipative Lotka-Volterra example: A comparison of the trajectories.
Pawan Goyal, aAI Generalized Stability Guaranteed Quadratic Embeddings for Nonlinear Dynamics 19/22



Numerical Examples

A High-dimensional Example: Nonlinear Burgers’ Equations

Governing equations:

ut + uux + u3ux = uxx, with x ∈ (0, 1) and t ∈ (0, T ),

u(0, ·) = 0, and u(1, ·) = 0,

u(x, 0) = 10 · sin(πx · f)x(1− x),

Since it is PDEs, thus the data are spatially coherent, we use convolutions
autoencoder.

We learn 4-dimensional quadratic model (≡ 4 observables) in the latent space.
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Figure: Burgers’ equation: A comparison of the solutions.
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Outlook

Contribution
Discussed Lifting-principle for nonlinear dynamical systems

It allows us to write nonlinear systems as quadratic systems using observables (or
lifted variables).

 Notion of quadratic-embeddings

Stability was a crucial factor to make things work with limited data and have robust

Extension to Hamiltonian systems

Open work

How to deal with unstable systems

Extension to discrete systems

Extensions to parametric, and control cases

Thank you for your attention!!
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