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Outline

¾Introduction to task-oriented dialogue and dialogue policies

¾Challenges in reinforcement learning for dialogue policies
1. Sparse reward problem
2. Absence of continually learning dialogue policies
3. Absence of realistic continual learning environments

¾Conclusion and future works



hhu.de

Dialogue is Fundamental
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¾Dialogue is the fundamental way of communcation between humans

¾Dialogue topics are infinitely diverse 

¾We focus on dialogue between a user and a dialogue system

¾The work centers around task-oriented dialogue
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Task-oriented Dialogue
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¾Task-oriented dialogue systems help users to achieve a specific task/goal during interaction
¾ Make a hairdresser appointment
¾ Find attractions/activities for a trip
¾ Find restaurants or hotels to book in town
¾ Buy train/bus tickets
¾ Set an alarm
¾ Organize your calendar
¾ Transfer money
¾ Get weather information
¾ …

¾The objective of the dialogue system is to fulfil the user goal

I need a 
restaurant.

How can I 
help you?
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¾Task-oriented dialogue systems operate within certain boundaries defined by an ontology
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¾Task-oriented dialogue systems operate within certain boundaries defined by an ontology
¾ Domains: restaurant, hotel, train, …

HotelDomain
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¾Task-oriented dialogue systems operate within certain boundaries defined by an ontology
¾ Domains: restaurant, hotel, train, …
¾ Slots within a domain:

¾ Hotel: price, area, day, number of people, …

HotelDomain

Slot area dayprice
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¾Task-oriented dialogue systems operate within certain boundaries defined by an ontology
¾ Domains: restaurant, hotel, train, …
¾ Slots within a domain:

¾ Hotel: price, area, day, number of people, …
¾ Values for a domain-slot pair:

¾ Hotel-area: north, east, west, centre
¾ Hotel-price: cheap, moderate, expensive, …

HotelDomain

Slot

Value

area dayprice

cheap

moderate

expensive

north

east

south

Monday

Tuesday

Sunday

… … …
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¾Task-oriented dialogue systems operate within certain boundaries defined by an ontology
¾ Domains: restaurant, hotel, train, …
¾ Slots within a domain:

¾ Hotel: price, area, day, number of people, …
¾ Values for a domain-slot pair:

¾ Hotel-area: north, east, west, centre
¾ Hotel-price: cheap, moderate, expensive, …

¾ Semantic actions: 
¾ Defined through domain-intent-slot triplets
¾ hotel-inform-address, hotel-request-price, …

¾Ontology defines what the system can understand (e.g. through domain-slot-value triplets)
¾Ontology defines what the system can say (semantic actions)

HotelDomain

Slot

Value

area dayprice

cheap

moderate

expensive

north

east

south

Monday

Tuesday

Sunday

… … …
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Tracking and Acting
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¾Task-oriented dialogue systems require two abilities
¾ Maintaining the current state of the dialogue (tracking)

initial turn current turn

Tracking

Belief tracker: maintains probability distribution
over values for every domain-slot pair
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¾Task-oriented dialogue systems require two abilities
¾ Maintaining the current state of the dialogue (tracking)
¾ Taking actions that lead to user goal success (acting)

initial turn current turn last turn

Tracking Acting

Belief tracker: maintains probability distribution
over values for every domain-slot pair

Dialogue policy: take actions in order to steer
conversation to task success
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Dialogue as Reinforcement Learning Problem
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User 
Goal

I need an affordable restaurant in the north
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User 
Goal

I need an affordable restaurant in the north

Rest-inform-price-cheap
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User 
Goal
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User 
Goal

I need an affordable restaurant in the north Belief tracker

Dialogue PolicyRest-select-priceShould it be cheap or moderate?
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User 
Goal

I need an affordable restaurant in the north Belief tracker

Dialogue PolicyRest-select-priceShould it be cheap or moderate?
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User 
Goal

I need an affordable restaurant in the north Belief tracker

Dialogue PolicyRest-select-priceShould it be cheap or moderate?

A cheap one please!

Pizza Hut at Fun Street 81 is an option

…

Success/Failure

Rest-inform-
name, address

Belief tracker

Dialogue Policy
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¾The dialogue policy has to solve a sequential decision making problem
¾ Find actions that lead to fulfilment of the user goal (dialogue success)
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¾The dialogue policy has to solve a sequential decision making problem
¾ Find actions that lead to fulfilment of the user goal (dialogue success)
¾ We can optimize the dialogue policy using reinforcement learning (RL)

Dialogue 
Policy 𝜋UserEnvironment RL agent

reward 𝑟!, observation

action

Maximize 𝔼[𝐺"#$] = 𝔼[∑!%&' 𝛾! ⋅ 𝑟!]
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¾The dialogue policy has to solve a sequential decision making problem
¾ Find actions that lead to fulfilment of the user goal (dialogue success)
¾ We can optimize the dialogue policy using reinforcement learning (RL)

¾High positive/negative reward at the end for dialogue success/failure
¾Small negative reward (e.g. -1) in every turn for dialogue efficiency

Dialogue 
Policy 𝜋UserEnvironment RL agent

reward 𝑟!, observation

action

Maximize 𝔼[𝐺"#$] = 𝔼[∑!%&' 𝛾! ⋅ 𝑟!]
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Problem with the Reward
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¾Informative reward is only received at the end of the conversation (success/failure)
→ Reward is sparse

¾Requires many interactions to find an optimal solution
¾ Low sample efficiency due to credit assignment problem

Fail
r&	= −1 r(	= −1 r)	= −1 r*	= −1 r+	= −1

Successr,	= 80

r,	= −40
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Dense rewards for dialogue policy optimization
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How can we obtain dense rewards for sample efficient learning?
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¾Dialogue policy needs to know

¾Task can be only solved once the user goal is known
¾ Can we encourage behaviour that gathers information about the user goal?

What is the user goal? How to solve the goal?

User needs a cheap Italian restaurant and a reservation
for Saturday, 6 p.m. Requires phone number and address.

Book restaurant table and inform
phone number and address.
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Proposal: Information Gain
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¾We propose information gain as reward for solving the sparse reward problem for dialogue
¾ Information gain encourages actions that lead to information gathering about the user goal
¾ Can be calculated in every turn of the conversation

I need an affordable restaurant in the north

price
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¾We propose information gain as reward for solving the sparse reward problem for dialogue
¾ Information gain encourages actions that lead to information gathering about the user goal
¾ Can be calculated in every turn of the conversation

I need an affordable restaurant in the north

Should it be cheap or moderate?

price
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Proposal: Information Gain
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¾We propose information gain as reward for solving the sparse reward problem for dialogue
¾ Information gain encourages actions that lead to information gathering about the user goal
¾ Can be calculated in every turn of the conversation

I need an affordable restaurant in the north

Should it be cheap or moderate?

A cheap one please!

Change in distribution

Gain in information

=Dissimilarity(   ,   ) = reward
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Experimental Setup
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¾We leverage the feudal dialogue management architecture (Feudal RL) for experiments

𝜋$-./ 𝜋0"-"123
Feudal RL confirm, request, select, … inform, book, recommend, …

Gather information Solve the task
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¾We leverage the feudal dialogue management architecture (Feudal RL) for experiments

𝜋$-./ 𝜋0"-"123
Feudal RL Success reward Success reward

Gather information Solve the task
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¾We leverage the feudal dialogue management architecture (Feudal RL) for experiments

¾We also compare against STRAC (previous state-of-the-art)

𝜋$-./ 𝜋0"-"123
Feudal RL Success reward Success reward

Feudal RL + information gain (ours) Information gain Success reward

Gather information Solve the task
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Experimental Setup
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¾We test on three different domains
¾ Cambridge restaurant (CR)
¾ San Francisco restaurant (SFR)
¾ Laptops (Lap)

¾And different user simulators
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¾Feudal RL with information gain improves sample efficiency and final performance
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¾Feudal RL with information gain obtains new state-of-the-art performance in terms of 
sample efficiency and final performance

Approach Training 
dialogues

Success
rate

Sum of 
rewards

STRAC (Chen et. al. 2020) 400 0.83 7.6

Feudal RL + info gain (ours) 400 0.89 9.5

STRAC (Chen et. al. 2020) 4000 0.93 10.7

Feudal RL + info gain (ours) 4000 0.94 11.0
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¾Feudal RL with information gain obtains new state-of-the-art performance in terms of 
sample efficiency and final performance

Approach Training 
dialogues

Success
rate

Sum of 
rewards

STRAC (Chen et. al. 2020) 400 0.83 7.6

Feudal RL + info gain (ours) 400 0.89 9.5

STRAC (Chen et. al. 2020) 4000 0.93 10.7

Feudal RL + info gain (ours) 4000 0.94 11.0
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¾Interactions with humans show superior performance
¾ Feudal RL with information gain asks questions if necessary

Approach Success AskIfNec Overall
Feudal RL 0.43 3.0 2.7

Feudal RL + info gain 0.71 3.8 3.7
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¾Interactions with humans show superior performance
¾ Feudal RL with information gain asks questions if necessary

Approach Success AskIfNec Overall
Feudal RL 0.43 3.0 2.7

Feudal RL + info gain 0.71 3.8 3.7
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✓ Information gain as dense reward for increased sample efficiency

But…
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✓ Information gain as dense reward for increased sample efficiency

But…

¾As commonly done, we tested the model on a fixed environment
¾ i.e. fixed ontology with fixed amount of domains

Tasks
Hotel

Restaurant
Taxi
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✓ Information gain as dense reward for increased sample efficiency

But…

¾As commonly done, we tested the model on a fixed environment
¾ i.e. fixed ontology with fixed amount of domains

What happens if we want to add new domains to the ontology?

Tasks
Hotel

Restaurant
Taxi

Train
Attraction
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✓ Information gain as dense reward for increased sample efficiency

But…

¾As commonly done, we tested the model on a fixed environment
¾ i.e. fixed ontology with fixed amount of domains

What happens if we want to add new domains to the ontology?

Can the system still interact successfully?

Tasks
Hotel

Restaurant
Taxi

Train
Attraction
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Dense Rewards and Continual Reinforcement Learning
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✓ Information gain as dense reward for increased sample efficiency

But…

¾As commonly done, we tested the model on a fixed environment
¾ i.e. fixed ontology with fixed amount of domains

What happens if we want to add new domains to the ontology?

Can the system still interact successfully?
Can the system continue learning, more like humans?

Tasks
Hotel

Restaurant
Taxi

Train
Attraction
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¾The world is ever-changing
¾ There is a vast amount of tasks a dialogue system can assist with
¾ And more are upcoming: Covid vaccination appointments, …

¾A dialogue system needs to continue learning to assist with more tasks over time
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¾Continual learning focuses on non-stationary, changing environments
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¾Continual learning focuses on non-stationary, changing environments

¾Often divided into a set of tasks that need to be completed sequentially

Task 1 Task 2 Task 3
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¾Continual learning focuses on non-stationary, changing environments

¾Often divided into a set of tasks that need to be completed sequentially

¾𝑀!"# =	< 𝑆 𝑡 , 𝐴 𝑡 , 𝑅 𝑡 , 𝑃 𝑡 > (Khetarpal et al. 2022)

MDP 𝑀( MDP 𝑀) MDP 𝑀*
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¾Continual learning focuses on non-stationary, changing environments

¾Often divided into a set of tasks that need to be completed sequentially

¾Compared to multi-task learning, we do not see all tasks at once
¾Compared to transfer learning, we still care about previously observed tasks
¾Compared to curriculum learning, we have no influence on the task order 

Task 1 Task 2 Task 3
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Task 1 Task 2 Task 3

le
ar

n
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¾Forgetting: performance on old tasks should not decrease when learning a new task

Task 1 Task 2 Task 3

le
ar

n

Don’t forget
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¾Forgetting: performance on old tasks should not decrease when learning a new task
¾Forward transfer: leverage past knowledge to improve performance on future tasks

Task 1 Task 2 Task 3

le
ar

n

Don’t forget Forward transfer
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¾Forgetting: performance on old tasks should not decrease when learning a new task
¾Forward transfer: leverage past knowledge to improve performance on future tasks
¾Limited resources: learner has only limited model capacity and memory
¾…

Task 1 Task 2 Task 3

le
ar

n

Don’t forget Forward transfer
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¾Forgetting: performance on old tasks should not decrease when learning a new task
¾Forward transfer: leverage past knowledge to improve performance on future tasks
¾Limited resources: learner has only limited model capacity and memory
¾…

¾These challenges are competing with each other (stability-plasticity dilemma)
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A note on Catastrophic Forgetting
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Embracing Change: Continual Learning in Deep Neural Networks (Hadsell et al. 2020)
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¾Learning to crawl, walk, jump, run, …

¾Learning different (programming) languages one after the other

¾Learn different sports

¾Classifying new image categories over time

¾Learning different ATARI games one after the other

¾Autonomous driving with changing tire frictions
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Pre-training Instruction 
Fine-Tuning RLHF

Prevent forgetting
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¾In task-oriented dialogue, tasks can be defined as different domains

Attraction Train Hotel
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¾Recall that an ontology defines what the system can understand and what actions it can take

Information Value

Hotel - price none

Hotel - area north

Hotel - request - address ?

Information to comprehend

Actions

Hotel - request - price

Hotel - offerbook

Hotel - inform - address

Possible actions
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¾Recall that an ontology defines what the system can understand and what actions it can take

Information Value

Hotel - price none

Hotel - area north

Hotel - request - address ?

Information to comprehend

Actions

Hotel - request - price

Hotel - offerbook

Hotel - inform - address

Possible actions

0

1

1

1

0

1
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¾Recall that an ontology defines what the system can understand and what actions it can take
¾Ontology grows as more domains are seen

Information Value

Hotel - price none

Hotel - area north

Hotel - request - address ?

Train - destination none

Train - arrival time none

… …

Information to comprehend

Actions

Hotel - request - price

Hotel - offerbook

Hotel - inform - address

Train - book

Train - recommend - id

…

Possible actions

0

1

1

1

0

1

0

0

0

0

0

0
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¾Recall that an ontology defines what the system can understand and what actions it can take
¾Ontology grows as more domains are seen

Information Value

Hotel - price none

Hotel - area north

Hotel - request - address ?

Train - destination none

Train - arrival time none

… …

Information to comprehend

Actions

Hotel - request - price

Hotel - offerbook

Hotel - inform - address

Train - book

Train - recommend - id

…

Possible actionslearn

av
er

ag
e

learn
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¾How can we incorporate new information and actions into our model most efficiently?

What is a train 
destination?

What does 
train book do?
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¾How can we incorporate new information and actions into our model most efficiently?

¾How can we deal with the ever-growing number of information as domains are added?

What is a train 
destination?

I can not comprehend hundreds 
of domains at the same time

What does 
train book do?
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¾How can we incorporate new information and actions into our model most efficiently?

¾How can we deal with the ever-growing number of information as domains are added?

¾How can we talk about new domains in a zero-shot fashion?

What is a train 
destination?

I only learned to 
talk about hotels

I can not comprehend hundreds 
of domains at the same time

I need a train on 
sunday

What does 
train book do?
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Continual learning for dialogue policies
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How can we enable continual learning for dialogue policies?
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Incorporate new information and actions
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¾Observation: every information and action is describable in natural language

¾Language model allows zero-shot understanding of new information

Information Value

Hotel - price none

Hotel - area north

Hotel - request - address ?

Train - destination none

Train - arrival time none

… …

Language 
Model

Transformer 
Encoder
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¾Bound the information to process

Information Value

Hotel - price none

Hotel - area north

Hotel - request - address ?

Train - destination none

Train - arrival time none

… …

Language 
Model

Transformer 
Encoder

mentioned

not mentioned
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Dealing with large amount of information
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¾Hard attention mask for bounding information (inspired by human focus)

Information Value

Hotel - price none

Hotel - area north

Hotel - request - address ?

Train - destination none

Train - arrival time none

… …

Language 
Model

Transformer 
Encoder

mentioned

not mentioned

Hard attention mask
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Talk about an unseen domain
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¾How can we talk about new domains in a zero-shot fashion?
¾Idea: abstract the question about the domain to choose first

I need a train on 
sunday

Talk about 
something else?

Talk about the 
user domain?

𝑝 1 − 𝑝

Domain Gate
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¾Autoregressively produces triplets of domain-intent-slot

Hotel -> request -> area -> Hotel -> inform -> address -> … 
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Transformer 
Decoder

Domain Gate

Domain 
distribution

Transformer 
Encoder

Similarity

Hotel
Rest
Train
Taxi
Attrac

‘start’

‘domain’

Hotel
~Language 

Model
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Transformer 
Decoder

Domain Gate

Domain 
distribution

Transformer 
Encoder

Similarity

Hotel
Rest
Train
Taxi
Attrac

‘start’

‘domain’

Hotel
~Language 

Model

Transformer 
Decoder

Intent 
distribution

Transformer 
Encoder

Similarity

request
inform
recom
book
nooffer

‘Hotel’

‘intent’

request
~Language 

Model
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Transformer 
Decoder

Domain Gate

Domain 
distribution

Transformer 
Encoder

Similarity

Hotel
Rest
Train
Taxi
Attrac

‘start’

‘domain’

Hotel
~Language 

Model

Transformer 
Decoder

Intent 
distribution

Transformer 
Encoder

Similarity

request
inform
recom
book
nooffer

‘Hotel’

‘intent’

request
~Language 

Model

Transformer 
Decoder

Slot 
distribution

Transformer 
Encoder

Similarity

area
price
parking
wifi
day

‘request’

‘slot’

area
~Language 

Model
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¾Tested on different task sequences (easy2hard, hard2easy, mixed), e.g.

¾Using 5 domains from MultiWOZ 2.0 (Budzianowski et al. 2018)

¾All models optimized using CLEAR (Rolnick et al. 2018)

Attraction Taxi Train Restaurant Hotel
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¾We want to prevent catastrophic forgetting and improve fast adaptation

¾Fast adaptation: utilize online samples for updates in addition to replay buffer experience

¾Prevent forgetting: sample experience from replay buffer
¾ KL-divergence loss for regularizing actor policy towards behaviour policy
¾ Mean-squared error loss for regularizing critic towards old predictions

¾Uses off-policy actor critic algorithm V-trace (Espeholt et al. 2018) 
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¾Bin: binary state representation (Weisz et al. 2018, Zhu et al. 2020)
¾ Uses a binary feature for every information whether it is present or not

0 1 0 1 1 …
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¾Bin: binary state representation (Weisz et al. 2018, Zhu et al. 2020)
¾ Uses a binary feature for every information whether it is present or not

¾Sem: semantic state representation (Xu et al. 2020)
¾ Uses trainable embeddings for domains, intents and slots
¾ Uses simple averaging over domains to obtain fixed size representation

0 1 0 1 1 …

average
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¾Bin: binary state representation (Weisz et al. 2018, Zhu et al. 2020)
¾ Uses a binary feature for every information whether it is present or not

¾Sem: semantic state representation (Xu et al. 2020)
¾ Uses trainable embeddings for domains, intents and slots
¾ Uses simple averaging over domains to obtain fixed size representation

¾Gold: serves as upper bound 
¾ obtained through training an (expert) Bin model for each domain until convergence

0 1 0 1 1 …

average
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¾Average performance across domains

Attraction → Taxi → Train → Restaurant → Hotel
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¾Average performance across domains

Attraction → Taxi → Train → Restaurant → Hotel

¾DDPT quickly accelerates, constantly increasing
¾ Indicates strong forward transfer
¾ Achieves upper bound performance with fixed size 

number of parameters!
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¾Average performance across domains

Attraction → Taxi → Train → Restaurant → Hotel

¾DDPT quickly accelerates, constantly increasing
¾ Indicates strong forward transfer
¾ achieves upper bound performance with fixed size 

number of parameters!

¾Baselines struggle on first cycle
¾ Indicates forgetting and weak forward transfer
¾ Second cycle necessary
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¾Forgetting (the lower the better): performance decrease on old tasks after training on new tasks
¾ in terms of success rate
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¾Forgetting (the lower the better): performance decrease on old tasks after training on new tasks
¾ in terms of success rate

¾DDPT is robust against forgetting
¾ Frozen language model embeddings

are more robust
¾ Domain gate mitigates problem of

choosing the correct domain
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¾Forgetting (the lower the better): performance decrease on old tasks after training on new tasks
¾ in terms of success rate

¾DDPT is robust against forgetting
¾ Frozen language model embeddings

are more robust
¾ Domain gate mitigates problem of

choosing the correct domain
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¾Zero-shot forward transfer (the higher the better): performance on unseen tasks
¾ in terms of success rate
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¾Zero-shot forward transfer (the higher the better): performance on unseen tasks
¾ in terms of success rate

¾DDPT has significant zero-shot
transfer capabilities
¾ Description embeddings build 

relationship between old and new 
information/actions

¾ Domain gate enables talking about
a new domain immediately
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✓ Information gain as dense reward for increased sample efficiency

✓ DDPT architecture enabling continual reinforcement learning of dialogue policies
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¾Observing domains sequentially for a fixed amount of time is an adequate environment for 
measuring forward transfer and forgetting

Attraction Train

Introduce
Train

Hotel

Introduce
Hotel
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¾But how realistic is it?
¾It is unlikely that a domain will disappear once another domain is introduced
¾Why should we evaluate the system on a domain it will never see again?

Attraction Train

Introduce
Train

Hotel

Introduce
Hotel



hhu.de

Towards Realistic Environments for Continual Learning
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¾Continually learning dialogue systems face various circumstances
¾ Multiple domains can emerge within a dialogue (taxi + restaurant within a dialogue)
¾ System experiences a multitude of user behaviours
¾ User demands can change over time (e.g. due to seasonal changes)
¾ Currently none of these circumstances is included in continual learning setups

¾How should we evaluate continually learning dialogue policies?
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How can we build realistic environments for continual learning?
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¾We propose a more realistic, flexible and controllable framework for continual reinforcement 
learning of dialogues (called RECORD)

Attraction
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¾We propose a more realistic, flexible and controllable framework for continual reinforcement 
learning of dialogues (called RECORD)

✓Domains occur again ✓Multi-domain dialogues
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¾We propose a more realistic, flexible and controllable framework for continual reinforcement 
learning of dialogues (called RECORD)

✓Domains occur again ✓Multi-domain dialogues
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¾We propose a more realistic, flexible and controllable framework for continual reinforcement 
learning of dialogues (called RECORD)

✓Domains occur again ✓Multi-domain dialogues  ✓User demands changes
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Attraction
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¾We propose a more realistic, flexible and controllable framework for continual reinforcement 
learning of dialogues (called RECORD)

✓Domains occur again ✓Multi-domain dialogues  ✓User demands changes  ✓Multiple users

Attraction Train
Attraction

Introduce
Train

Hotel

Attraction

Introduce
Hotel

Train

Hotel

Attraction

Train

User demand
changes
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¾We propose a more realistic, flexible and controllable framework for continual reinforcement 
learning of dialogues (called RECORD)

¾RECORD generalizes the previous setup!
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How should we evaluate continually learning dialogue policies?
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¾Continually learning agents should not be evaluated on how well they perform on 
tasks/domains that never occur again
¾ Humans also forget over time if the knowledge is not required

¾Agents should be evaluated on how well they perform during their lifetime
¾ Be as good as possible on the circumstances that are actually observed during learning

→ We evaluate agents on their lifetime performance
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How should we optimize continually learning agents?
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¾Models are typically optimized for episodic return (per dialogue return)

¾This optimizes for the “present”, i.e. the current circumstances

¾Does not take into account changing circumstances in the future that inevitably occur in 
continual learning
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¾Models are typically optimized for episodic return (per dialogue return)

¾We propose to include lifetime return into the optimization to take changes into account
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¾RL algorithms often have additional loss terms that affect learning

¾Optimal hyperparameters can vary throughout lifetime of the dialogue system

¾Proposal: meta-learn hyperparameters towards maximization of lifetime performance

Maximize entropy Regularize towards past behaviour

Hyperparameters
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¾Meta-learning consists of two models (potentially the same): base model and meta model
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¾Meta-learning consists of two models (potentially the same): base model and meta model

¾Meta-learning consists of two phases: inner loop updates and outer loop updates
¾ Inner loop update: update the base model 𝜃! using meta model predictions (𝑀 times)
¾ Outer loop update: update the meta model 𝜂 based on the updated parameters of the base model
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¾Meta-learning consists of two models (potentially the same): base model and meta model

¾Meta-learning consists of two phases: inner loop updates and outer loop updates
¾ Inner loop update: update the base model 𝜃! using meta model predictions (𝑀 times)
¾ Outer loop update: update the meta model 𝜂 based on the updated parameters of the base model

¾ The updated parameters 𝜃$89 of the base model depend on the meta model parameters 𝜂

Depends on 𝜂
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¾We test 4 different settings
¾ epi: optimize for episodic return
¾ life: optimize for lifetime return
¾ epi+life: optimize for episodic and lifetime return
¾ epi+life+meta: optimize for episodic and lifetime return and meta-learn hyperparameters 

¾We use CLEAR as base algorithm
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¾Average lifetime return for different optimization objectives

epi+life+meta
epi+life

life
epi

average lifetime return
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¾Average success rate within
a time-window of 500 dialogues

¾Performance drops when
new domain is introduced

¾All models adapt over time
after domain introduction

Introduce new domains Changing demands every 1000 dialogues
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¾Loss weights decrease over time as more experience is collected
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✓ Information gain as dense reward for increased sample efficiency

✓ DDPT architecture enabling continual reinforcement learning of dialogue policies

✓ RECORD framework for realistic environments

✓ Lifetime return optimization and meta-learning for enhanced continual learning
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¾Improve adaptation of continually learning agents
¾ Episodic memory
¾ Exploration 

¾Reward learning
¾ Learn intrinsic reward functions during the lifetime of the agent that adapts to circumstances

¾Large language model (LLM) integration
¾ Utilize generalization capabilities of LLMs for fast adaptation in continual learning
¾ Combine task-oriented dialogue system modules with LLMs
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