Robustly representing uncertainty
through sampling in deep neural
networks

E Bernoulli DropConnect

E Gaussian DropConnect

m O E Bernoulli Dropout

E Gaussian Dropout

E Spike-and-Slab Dropout

Fabio Peruzzo



Overview




Uncertainty estimation and neural
networks

aleatoric uncertainty:
uncertainty present in the training data
(estimated e.g. through softmax output)
It cannot be reduced by collecting more data

epistemic uncertainty:
parameter uncertainty, coming from training process




Uncertainty estimation and neural
networks

aleatoric uncertainty:
uncertainty present in the training data
(estimated e.g. through softmax output)
It cannot be reduced by collecting more data

epistemic uncertainty:
parameter uncertainty, coming from training process




Epistemic uncertainty: ideal case

(a) Standard network
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How to estimate uncertainty
coming from the training
process?

We would need to re-train the
model several (hundreds of)
times.



Approximate methods for epistemic
uncertainty

Among the most famous approaches for approximate Bayesian inference:

1. Laplace approximation:
David JC MacKay. A practical bayesian framework for backpropagation networks. Neural
computation, 4(3):448-472, 1992.

2. Markov Chain Monte Carlo
Max Welling and Yee W ian learning via stochastic gradient




Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning

Yarin Gal YG279@CAM.AC.UK
Zoubin Ghahramani 7ZG201 @ CAM.AC.UK

University of Cambridge

Introduces a theoretical framework that links
dropout training <=> deep Gaussian processes
through Bayesian inference

This paper proved how and with which assumptions dropout at
inference can be used for uncertainty estimation



Dropout: model sampling

(b) Dropout network
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Dropout: model sampling

Dropout interpretation: Ensemble model
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Variational Methods for Bayesian NNs

Predicting y in Bayesian Inference:

P(p1%, X,Y)=| P(3I%, W, W,,b)

Problem: estimating
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Predicting y in Bayesian Inference:

P(p1%, X,Y)=[ P(31%, W, W,,b)P(W, W, bIX,Y)AW dW,db

Problem: estimating

The variational approximation

P(.WI’ Wlb/X’Y:)N(:IM{.WI’WE’b:]zq}.f,(.WI:]qM;{.WZ:]qm{.b)




Dropout and Variational Methods

If we take a Deep Gaussian Process and
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Dropout and Variational Methods

If we take a Deep Gaussian Process and

qM(W)=Ha 4 (W.) with w,/m, the colums of W/M
4, (Wao)=pN(m,, 6 1)+1-p)*N(0,61)

q(b)=N(m,&1I)

and if we train the Bayesian NN to maximise the ELBO

prior




Dropout and Variational Methods

S0, a Deep Gaussian Process with

qM(W)=Ha 4 (W.) with w,/m, the colums of W/M
4, (Wa)=pN(m,, & 1)H1-p)xN (0, 1)

Is equivalent to independently sampling models through dropout

Dropout interpretation: Ensemble model
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Experiment: Mauna Loa CO2 concentrations

We can (approximately) infer the uncertainty of the model

-1 0 1 2 3

-1 0 1 2 3
(a) Standard dropout with weight averaging (b) Gaussian process with SE covariance function

(¢c) MC dropout with ReLLU non-linearities

- NN with 4 or 5 hidden layers and 1024 hidden units
- Fig 2b SE = squared exponential

- None of the models captures periodicity

- Strong dependence on activation functions of
uncertainty bands

- Seems to imply that RelLU is very unstable -> untrue!




Conclusions on
“Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning”

- Dropout can be used to estimate epistemic uncertainty
- There is a direct connection between DGM and dropout sampling
- This connection can be proved using Variational approximation




Conclusions on
“Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning”

- Dropout can be used to estimate epistemic uncertainty
- There is a direct connection between DGM and dropout sampling
- This connection can be proved using Variational approximation

However:
- Goodness of such approximation is unclear
- strong dependence on activation function




Robustly representing uncertainty through sampling
in deep neural networks

Patrick McClure Nikolaus Kriegeskorte
MRC Cognition and Brain Sciences Unit Department of Psychology
University of Cambridge Columbia University
patrick.mcclure@mrc-cbu.cam.ac.uk nk2765@columbia.edu

- It explores generalisations of dropout
- Tests on two examples (MNIST and Cifar-10)
- Not a very successful paper (has it been published?)



E Bernoulli DropConnect

E Gaussian DropConnect

M

W =V oM where M ~ p(M)

Where

- W, V, M are matrices with one entry for each connection in the NN
- W are the sampled weights of the NN

-V are the variational parameters (the “unmodified” weights)

- M is a mask which samples a perturbation to the model



E Bernoulli DropConnect

E Gaussian DropConnect

M

Bernoulli Dropout:
For each line (each neuron), it samples from a Bernoulli distribution.
If the result is 1, it keeps the neuron. If O it removes it.

Bernoulli Dropconnect:
For each connection, it samples from a Bernoulli distribution.
If the result is 1, the connections is kept. If O it is removed.



E Bernoulli DropConnect

E Gaussian DropConnect

m O E Bernoulli Dropout

E Gaussian Dropout

E Spike-and-Slab Dropout

M

Gaussian Dropout:
For each line (each neuron), it samples from a Gaussian with mean 1.
The value is multiplied to V to sample the weights W.

Gaussian Dropconnect:
For each connection, it samples Gaussian with mean 1.
The value is multiplied to V to sample the weights W.



E Bernoulli DropConnect

ﬂ Gaussian DropConnect

M

Spike-and-slab Dropout:
Mixture of Bernoulli Dropout and Gaussian Dropconnect.



Experiments: logistic regression

Bernoulli Gaussian Bernoulli Gaussian Spike and Slab
Weight Noise Weight Noise Unit Noise Unit Noise Noise
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- Linear network with five hidden units
- Classity data drawn from two 2D Gaussian distributions

MAP: Maximum a posteriori. Usual training.
SGLD: Stochastic gradient Langevin Dynamics training.
MC: Monte Carlo, sample multiple models and average predictions.



Experiments: images

2 convolutional layers + FC

13 convolutional layers + FC

Both also use L2 regularisation



Experiments: images

Table 1: MNIST and CIFAR-10 mean and standard deviation of test errors for the trained convolutional
neural networks (CNNs) with and without Monte-Carlo (MC) across 5 runs, each MC run using 10
samples.

MNIST CIFAR-10
Method Mean Error (%) Error Std. Dev. Mean Error (%) Error Std. Dev.
MAP 0.76 - 25.86 -
Bernoulli DropConnect 0.56 - 16.46

MC Bernoulli DropConnect 0.56 0.03 16.59 0.11
Gaussian DropConnect 0.56 - 16.78 -
MC Gaussian DropConnect 0.58 0.02 16.65 0.11
Bernoulli Dropout 0.49 - 11.23 -
MC Bernoulli Dropout 0.48 0.03 9.95 0.08

Gaussian Dropout 0.42 - 9.07 -
MC Gaussian Dropout 0.36 0.04 9.00 0.10
Spike-and-Slab Dropout 0.48 - 10.64 -
MC Spike-and-Slab Dropout 0.46 0.01 10.05 0.06

Sampling seems to improve little the overall prediction,
apart for Bernoulli Dropout.

More interesting test:
add Gaussian noise of increasing variance to test images



Calibration plot

- Classifiers produce class probabilities
- They are typically tested through Precision/Recall/F1

How do | know if | can trust the raw output to be a probability?




Calibration plot

- Classifiers produce class probabilities
- They are typically tested through Precision/Recall/F1

How do | know if | can trust the raw output to be a probability?
Calibration plot for Titanic data
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Calibration plot:
the y-value is the proportion
of true outcomes, and x-value
IS the mean predicted
probability.
Well-calibrated <=> y=X.
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Calibration MSE.
mean squared error between the model prediction and y=x line



Experiments: MNIST
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BDC, BDO: Bernoulli DropConnect and Dropout
GDC, GDO: Gaussian DropConnect and Dropout
SSD: Spike-and-slab Dropout



Experiments: Cifar-10

=
O
(S

O

o

Calibration MSE
o

—
°
L
c
S
-
©
O
=
2]
2
ks
O

D

\

0.5 0.5
Noise StD. Noise StD.

(a) (b)

BDC, BDO: Bernoulli DropConnect and Dropout
GDC, GDO: Gaussian DropConnect and Dropout
SSD: Spike-and-slab Dropout



Conclusions on
“Robustly representing uncertainty through sampling in deep
neural networks”

- DropConnect seems to yield better calibration than Dropout
- Sampling seems to make models more robust to noise




Conclusions on
“Robustly representing uncertainty through sampling in deep
neural networks”™

- DropConnect seems to yield better calibration than Dropout
- Sampling seems to make models more robust to noise

However:
- The examples in the paper leave more questions than answers
- We are not directly comparing uncertainty estimation, just calibration.




More recent example

scientific reports

| W) Check for updates

OPEN DropConnect is effective
in modeling uncertainty
of Bayesian deep networks

Aryan Mobiny*™, Pengyu Yuan?, Supratik K. Moulik?, Naveen Garg?, Carol C. Wu? &
Hien Van Nguyen?

- Published in 2021
- Applies MC DropConnect to semantic segmentation

- Shows improvement of DropConnect over Dropout



input image

More recent example

Thresholded uncertainty map
MC-DropConnect approximated 4o. [eertain

Bayesian Neural Network model uncertainty (Inqm)""ﬁ : [l uncertain

evaluation map
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Segmentation <=> pixel-wise classification
They test this approach also on MNIST and Cifar-10



Test on MNIST and Cifar-10

P(correct, certain) N

They take different test metrics Ree(lIr) = Pry (correct|certain) = ——5 "t = = NN,

P(uncertain, incorrect) Niy

R;,(IT) = Pr..(uncertain|incorrect) = —
w(lT) I | ) P(incorrect) Niy + Nic

Ncc + Niu
Ncc + Niu + Ncu + Nic

UA(r) =
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Image segmentation

|| correct prediction incorrect prediction

MC-DropConnect MC-Dropout
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= == = MC-Dropout = =h= = MC-DropConnect

- Incorrect predictions have higher uncertainty
- DropConnect does a better job at uncertainty estimation
- Code is available! github.com/hula-ai/mc_dropconnect

Prediction error
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Overall Conclusions

- Epistemic uncertainty can be estimated through sampling

- Uncertainty values cannot be directly interpreted as probability, but rather give
relative confidence on prediction of one model over another (uncertainty threshold)

- This may be why there are very few papers using it for regression

- Calibration seems to benefit greatly from resampling

- DropConnect seems to beat Dropout in uncertainty estimation
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- Epistemic uncertainty can be estimated through sampling

- Uncertainty values cannot be directly interpreted as probability, but rather give
relative confidence on prediction of one model over another (uncertainty threshold)

- This may be why there are very few papers using it for regression
- Calibration seems to benefit greatly from resampling

- DropConnect seems to beat Dropout in uncertainty estimation

However:
- Uncertainty through resampling needs bigger model for same accuracy
- Still useful when model size is not too much of a constraint

Questions?




