Robustly representing uncertainty through sampling in deep neural networks

Fabio Peruzzo

Overview

- 1. Uncertainty estimation and neural networks
- 2. A look back at variational approximation in Bayesian NN methods
- 3. "Robustly representing uncertainty through sampling"
- 4. DropConnect beats DropOut

Uncertainty estimation and neural networks

aleatoric uncertainty:

uncertainty present in the training data (estimated e.g. through softmax output) It cannot be reduced by collecting more data

epistemic uncertainty:

parameter uncertainty, coming from training process

Uncertainty estimation and neural networks

aleatoric uncertainty:

uncertainty present in the training data (estimated e.g. through softmax output) It cannot be reduced by collecting more data

epistemic uncertainty:

parameter uncertainty, coming from training process

=> Bayesian DNNs attempt to learn a distribution over their parameters thereby allowing for the computation of epistemic uncertainty

However, ideal Bayesian methods do not scale well due to the difficulty in computing, so **we need to rely on approximate methods**

Epistemic uncertainty: ideal case

How to estimate uncertainty coming from the training process?

We would need to re-train the model several (hundreds of) times.

Approximate methods for epistemic uncertainty

Among the most famous approaches for approximate Bayesian inference:

1. Laplace approximation:

David JC MacKay. A practical bayesian framework for backpropagation networks. Neural computation, 4(3):448–472, 1992.

2. Markov Chain Monte Carlo

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages 681–688, 2011.

3. Variational approaches

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Insights and applications. In Deep Learning Workshop, ICML, 2015.

Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning

Yarin Gal Zoubin Ghahramani University of Cambridge YG279@CAM.AC.UK ZG201@CAM.AC.UK

Introduces a theoretical framework that links dropout training <=> deep Gaussian processes through Bayesian inference

This paper proved how and with which assumptions dropout at inference can be used for uncertainty estimation

Dropout: model sampling

Dropout: model sampling

Variational Methods for Bayesian NNs

Predicting y in Bayesian Inference:

$$P(\hat{y}|\hat{x}, X, Y) = \int P(\hat{y}|\hat{x}, W_1, W_2, b) P(W_1, W_2, b|X, Y) dW_1 dW_2 db$$

Problem: estimating the posterior

Variational Methods for Bayesian NNs

Predicting y in Bayesian Inference:

$$P(\hat{y}|\hat{x}, X, Y) = \int P(\hat{y}|\hat{x}, W_1, W_2, b) P(W_1, W_2, b|X, Y) dW_1 dW_2 db$$

Problem: estimating the posterior

The variational approximation

$$P(W_1, W_2b/X, Y) \sim q_M(W_1, W_2, b) = q_{M_1}(W_1) q_{M_2}(W_2) q_m(b)$$

Dropout and Variational Methods

If we take a Deep Gaussian Process and

$$q_{M}(W) = \prod_{\alpha} q_{m_{\alpha}}(w_{\alpha}) \text{ with } w_{\alpha}/m_{\alpha} \text{ the colums of } W/M$$
$$q_{m_{\alpha}}(w_{\alpha}) = pN(m_{\alpha}, \theta^{2}I) + (1-p) * N(0, \theta^{2}I)$$
$$q(b) = N(m, \theta^{2}I)$$

Dropout and Variational Methods

If we take a Deep Gaussian Process and

$$q_{M}(W) = \prod_{\alpha} q_{m_{\alpha}}(w_{\alpha}) \text{ with } w_{\alpha}/m_{\alpha} \text{ the colums of } W/M$$
$$q_{m_{\alpha}}(w_{\alpha}) = pN(m_{\alpha}, \theta^{2}I) + (1-p)*N(0, \theta^{2}I)$$
$$q(b) = N(m, \theta^{2}I)$$

and if we train the Bayesian NN to maximise the ELBO

$$ELBO(q_{M}(W_{1}, W_{2}, b)) = E_{W_{1}, W_{2}, b \sim q_{M}(W_{1}, W_{2}, b)} [\ln P(D/W_{1}, W_{2}, b)] - KL(q_{M}(W_{1}, W_{2}, b))P(W_{1}, W_{2}, b))$$

Likelihood prior

in the limit $\theta \rightarrow 0$, the inference becomes what we expect:

$$E_{q_{M}(y^{*}/x^{*})}(y^{*}) \simeq \frac{1}{T} \sum_{t=1}^{T} \hat{y}^{*}(x^{*}, z_{1}^{t}, z_{2}^{t}, ...)$$

Dropout and Variational Methods

So, a Deep Gaussian Process with

$$q_{M}(W) = \prod_{\alpha} q_{m_{\alpha}}(w_{\alpha}) \text{ with } w_{\alpha}/m_{\alpha} \text{ the colums of } W/M$$
$$q_{m_{\alpha}}(w_{\alpha}) = pN(m_{\alpha}, \theta^{2}I) + (1-p)*N(0, \theta^{2}I)$$
$$q(b) = N(m, \theta^{2}I)$$

Is equivalent to independently sampling models through dropout

$$E_{q_{M}(y',x')}(y^{*}) \simeq \frac{1}{T} \sum_{t=1}^{T} \hat{y}^{*}(x^{*}, z_{1}^{t}, z_{2}^{t}, ...)$$

Experiment: Mauna Loa CO2 concentrations

We can (approximately) infer the uncertainty of the model

- NN with 4 or 5 hidden layers and 1024 hidden units
- Fig 2b SE = squared exponential
- None of the models captures periodicity
- Strong dependence on activation functions of uncertainty bands

- Seems to imply that ReLU is very unstable -> untrue!

Conclusions on "Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning"

- Dropout can be used to estimate epistemic uncertainty
- There is a direct connection between DGM and dropout sampling
- This connection can be proved using Variational approximation

Conclusions on "Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning"

- Dropout can be used to estimate epistemic uncertainty
- There is a direct connection between DGM and dropout sampling
- This connection can be proved using Variational approximation

However:

- Goodness of such approximation is unclear
- strong dependence on activation function

So... is it any good?

Robustly representing uncertainty through sampling in deep neural networks

Patrick McClure MRC Cognition and Brain Sciences Unit University of Cambridge patrick.mcclure@mrc-cbu.cam.ac.uk Nikolaus Kriegeskorte Department of Psychology Columbia University nk2765@columbia.edu

- It explores generalisations of dropout
- Tests on two examples (MNIST and Cifar-10)
- Not a very successful paper (has it been published?)

$$\hat{W} = V \circ \hat{M}$$
 where $\hat{M} \sim p(M)$

Where

- W, V, M are matrices with one entry for each connection in the NN
- W are the sampled weights of the NN
- V are the variational parameters (the "unmodified" weights)
- M is a mask which samples a perturbation to the model

Bernoulli Dropout:

For each line (each neuron), it samples from a Bernoulli distribution. If the result is 1, it keeps the neuron. If 0 it removes it.

Bernoulli Dropconnect:

For each connection, it samples from a Bernoulli distribution. If the result is 1, the connections is kept. If 0 it is removed.

Gaussian Dropout:

For each line (each neuron), it samples from a Gaussian with mean 1. The value is multiplied to V to sample the weights W.

Gaussian Dropconnect:

For each connection, it samples Gaussian with mean 1. The value is multiplied to V to sample the weights W.

Spike-and-slab Dropout:

Mixture of Bernoulli Dropout and Gaussian Dropconnect.

Experiments: logistic regression

- Linear network with five hidden units
- Classify data drawn from two 2D Gaussian distributions

MAP: Maximum a posteriori. Usual training.
SGLD: Stochastic gradient Langevin Dynamics training.
MC: Monte Carlo, sample multiple models and average predictions.

Experiments: images

2 convolutional layers + FC

13 convolutional layers + FC

Both also use L2 regularisation

Experiments: images

Table 1: MNIST and CIFAR-10 mean and standard deviation of test errors for the trained convolutional neural networks (CNNs) with and without Monte-Carlo (MC) across 5 runs, each MC run using 10 samples.

	MNIST		CIFAR-10	
Method	Mean Error (%)	Error Std. Dev.	Mean Error (%)	Error Std. Dev.
MAP	0.76	-	25.86	-
Bernoulli DropConnect	0.56	-	16.46	-
MC Bernoulli DropConnect	0.56	0.03	16.59	0.11
Gaussian DropConnect	0.56	-	16.78	-
MC Gaussian DropConnect	0.58	0.02	16.65	0.11
Bernoulli Dropout	0.49	-	11.23	-
MC Bernoulli Dropout	0.48	0.03	9.95	0.08
Gaussian Dropout	0.42	-	9.07	-
MC Gaussian Dropout	0.36	0.04	9.00	0.10
Spike-and-Slab Dropout	0.48	-	10.64	_
MC Spike-and-Slab Dropout	0.46	0.01	10.05	0.06

Sampling seems to improve little the overall prediction, apart for Bernoulli Dropout.

More interesting test:

add Gaussian noise of increasing variance to test images

Calibration plot

- Classifiers produce class probabilities
- They are typically tested through Precision/Recall/F1

How do I know if I can trust the raw output to be a probability?

Calibration plot

- Classifiers produce class probabilities
- They are typically tested through Precision/Recall/F1

How do I know if I can trust the raw output to be a probability?

Calibration plot:

the y-value is the proportion of true outcomes, and x-value is the mean predicted probability. Well-calibrated <=> y=x.

Calibration MSE:

mean squared error between the model prediction and y=x line

Experiments: MNIST

BDC

GDC

GDO

MCSSD

MCBDC

MCGDC

BDC, BDO: Bernoulli DropConnect and Dropout GDC, GDO: Gaussian DropConnect and Dropout **SSD:** Spike-and-slab Dropout

Experiments: Cifar-10

BDC, BDO: Bernoulli DropConnect and Dropout **GDC, GDO:** Gaussian DropConnect and Dropout **SSD:** Spike-and-slab Dropout

Conclusions on "Robustly representing uncertainty through sampling in deep neural networks"

- DropConnect seems to yield better calibration than Dropout
- Sampling seems to make models more robust to noise

Conclusions on "Robustly representing uncertainty through sampling in deep neural networks"

- DropConnect seems to yield better calibration than Dropout
- Sampling seems to make models more robust to noise

However:

- The examples in the paper leave more questions than answers
- We are not directly comparing uncertainty estimation, just calibration.

So... is it any good?!!

More recent example

scientific reports

Check for updates

OPEN DropConnect is effective in modeling uncertainty of Bayesian deep networks

Aryan Mobiny^{1⊠}, Pengyu Yuan¹, Supratik K. Moulik², Naveen Garg³, Carol C. Wu³ & Hien Van Nguyen¹

- Published in 2021
- Applies MC DropConnect to semantic segmentation
- Shows improvement of DropConnect over Dropout

More recent example

Segmentation <=> pixel-wise classification They test this approach also on MNIST and Cifar-10

Test on MNIST and Cifar-10

Test on MNIST and Cifar-10

Image segmentation

- Incorrect predictions have higher uncertainty
- DropConnect does a better job at uncertainty estimation
- Code is available! github.com/hula-ai/mc_dropconnect

Overall Conclusions

- Epistemic uncertainty can be estimated through sampling

- Uncertainty values cannot be directly interpreted as probability, but rather give relative confidence on prediction of one model over another (uncertainty threshold)

- This may be why there are very few papers using it for regression
- Calibration seems to benefit greatly from resampling
- DropConnect seems to beat Dropout in uncertainty estimation

Overall Conclusions

- Epistemic uncertainty can be estimated through sampling

- Uncertainty values cannot be directly interpreted as probability, but rather give relative confidence on prediction of one model over another (uncertainty threshold)

- This may be why there are very few papers using it for regression
- Calibration seems to benefit greatly from resampling
- DropConnect seems to beat Dropout in uncertainty estimation

However:

- Uncertainty through resampling needs bigger model for same accuracy
- Still useful when model size is not too much of a constraint

Questions?