Reference
Deep Learning With Functional Inputs,
Journal of Computational and Graphical Statistics(2023)
Abstract
We present a methodology for integrating functional data into deep neural networks. The model is defined for scalar responses with multiple functional and scalar covariates. A by-product of the method is a set of dynamic functional weights that can be visualized during the optimization process. This visualization leads to a greater interpretability of the relationship between the covariates and the response relative to conventional neural networks. The model is shown to perform well in a number of contexts including prediction of new data and recovery of the true underlying relationship between the functional covariate and scalar response; these results were confirmed through real data applications and simulation studies. An R package (FuncNN) has also been developed on top of Keras, a popular deep learning library—this allows for general use of the approach. A supplemental document, the data and R codes are available online.