Reference
Hybrid Probabilistic Inference with Logical and Algebraic Constraints: a Survey,
International Joint Conference on Artificial Intelligence(2021)
Abstract
Real world decision making problems often involve both discrete and continuous variables and require a combination of probabilistic and deterministic knowledge. Stimulated by recent advances in automated reasoning technology, hybrid (discrete+continuous) probabilistic reasoning with constraints has emerged as a lively and fast growing research field. In this paper we provide a survey of existing techniques for hybrid probabilistic inference with logic and algebraic constraints. We leverage weighted model integration as a unifying formalism and discuss the different paradigms that have been used as well as the expressivity-efficiency trade-offs that have been investigated. We conclude the survey with a comparative overview of existing implementations and a critical discussion of open challenges and promising research directions.