Do Not Trust Additive Explanations, Alicja Gosiewska, Przemyslaw Biecek. (2019)


Explainable Artificial Intelligence (XAI)has received a great deal of attention recently. Explainability is being presented as a remedy for the distrust of complex and opaque models. Model agnostic methods such as LIME, SHAP, or Break Down promise instance-level interpretability for any complex machine learning model. But how faithful are these additive explanations? Can we rely on additive explanations for non-additive models? In this paper, we (1) examine the behavior of the most popular instance-level explanations under the presence of interactions, (2) introduce a new method that detects interactions for instance-level explanations, (3) perform a large scale benchmark to see how frequently additive explanations may be misleading.